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August 9, 1988 -- 

AFSOR *.

Directorate of Physical and . .. ..
Geophysical Sciences

Building 410
Boling Air Force Base
Washington, DC 20332-6448 - . .

Attention: Dr. Robert Barker

Subject: Contract No. F49620-86-C-0068 /".
JAYCOR Project No. 2472

Dear Dr. Barker:

Dr. Dave Sargis has forwarded to me the file and responsibilities relating to the
referenced contract. In response to what I understand is your request to Dave, I
have accordingly enclosed a single copy of the three reports which the file indicates
have been developed for the contract, and I list the references to the two oral
presentations which the file indicates have been presented. I also provide a short
summary of the work which has been completed. I close this correspondence with the
suggestion that electromagnetic particle simulations, which we are fully capable of
undertaking, could be advantageously applied to the investigation of the HRL
millimeter-wave source.

The three reports, which have been completed under the referenced contract are:

1. M. Rosenberg and N. A. Krall, 'Theory Related to a MM Wave Source
Experiment," Rep. J530-87-703/2472, JAYCOR, San Diego, CA (1987).

2. M. Rosenberg and N. A. Kral], 'Theory Related to a MM Wave Source
Experiment," Rep. J530-87-718/2472, JAYCOR, San Diego, CA (1987).

3. M. Rosenberg and N. A. Krall, 'Theory of a MM-Wave Source Experiment,"
Rep. J530-88-726/2472, JAYCOR, San Diego, CA (1988).

The references to the two oral presentations (at APS Plasma Physics Meetings)
are:

1. M. Rosenberg and N. A. Krall, "Phenomenology of MM Wave Plasma Source
Experiments, Bull. Am. Phys. Soc. 31, 1602 (1986).

2. M. Rosenberg and N. A. Krall, 'Theory of a MM-Wave Plasma Source
Experiment," Bull. Am. Phys. Soc. 3. 1885 (1987).

11011 Torreyana Road - Post Office Box 85154 • San Diego, California 92138-9259 • (619) 453-6580



The referenced contract has provided theoretical support for the HRL (Hughes
Research Laboratories) experiment which is intended to demonstrate the production of
millimeter-wavelength radiation by the three-wave mixing concomitant with the
interaction of counterstreaming electron beams in a plasma-filled waveguide/cavity.
The specific objectives of the research has been to investigate 1) beam dynamics,
2) linear beam-plasma interactions, 3) nonlinear beam-plasma interactions, 4) radiative
mechanisms, and 5) mechanisms for the temporal modulation of radiation.

The results of the research can be summarized as six major points. 1) The beam
dynamics may be controlled by the magnetic self-focusing an ionization; however, an
inconsistency may be evident insofar as the required length for magnetic focusing
appears to be larger than the length of the device. 2) The dominant beam-plasma
interaction is Cerenkov excitation of electron plasma waves with a discrete spectrum.
3) The unstable electron-plasma waves grow to an amplitude determined by beam
saturation on the fast electron time scale. 4) The scaling of the radiative
electromagnetic power is consistent with weak turbulence estimates. 5) The saturated
electron-plasma waves can have sufficient amplitude to excite the modulational
instability. 6) The temporal modulation of radiation, observed in the experiment on
the ion time scale, may be a consequence of strong turbulence effects.

The capabilities of JAYCOR's Electromagnetic Applications Division are
summarized in a separate enclosure. In particular, the capability to do
electromagnetic particle simulations could be advantageously applied to the
development of the HRL millimeter-wave source. The particle simulations are
particularly applicable to the understanding and interpretation of nonlinear processes
which are often difficult to assess from a purely theoretical standpoint, and they can
be used for comparison with the nonlinear models, developed under the referenced
contract, for an initially homogeneous plasma.

I hope this letter and the enclosures benefit you; however, if any additional
requirements remain, I can be reached directly at (619) 535-3168. 1 tentatively have
plans to be on the East Coast in October, and I would appreciate at that time to
have the opportunity to set up an appointment with you in order to discuss our
capabilities relative to your programs.

Sincerely,

J. L Sperling, Manager
Electromagnetic Applications Division

JLS/heh

Enclosures



EI C_7OMAGNET1C APPUCATIONS

The Electromagnetic Applications Division, a component of JAYCOR's System

Survivability and Technology Applications Group in San Diego, uses its background in

electromagnetic theory and numerical simulation to address a complex set of practical

problems, ranging from theoretical, numerical, and experimental investigations of

laboratory and space plasmas to radar jamming and algorithm development for systems

codes.

The resources of the Electromagnetic Applications Division include expertise in

the theory of plasma stability, transport, and heating, along with off-the-shelf

numerical models applicable to mirror machines, reversed field configurations,

tokamaks, imploding liners, magnetic solenoids, z-pinches, plasma switches, and other

plasma devices. The numerical models include fluid codes, particle-pusher codes,

hybrid codes, and dispersion-relation solvers. Areas of application include

microinstability and macroinstability phenomenology, prediction of the behavior of

plasma devices, explanation of the results of space and laboratory plasma experiments,

calculation of wave absorption and propagation in plasmas, and calculation of energy

loss rates from magnetically confined plasmas. Other applications include tomography,

ion-cyclotron emission from plasmas, and the analysis of microwave-driven neutralizers

and negative-ion sources for intense neutral beams.

One ongoing program has been the creation and implementation of numerical

algorithms for the development of communication systems, radars, and sensors which

are robust to the deleterious scintillation and clutter associated with high-altitude

plasma structures. The work has involved the discernment of various plasma transport

processes, such as viscosity, as being key to the phenomenon of "frozen" striations.

New and innovative techniques have been developed to numerically analyze structure



evolution in three dimensions, and an innovative experiment has successfully simulated

the formation of high-altitude striations in the laboratory.

The Division has the in-house capability to predict disturbed high-altitude

environments and the effect of the environments upon communication links and radars.

The Division's expertise, in disturbed high-altitude environments, has been used to

solve additional problems significant to National security. For example, the

penetration of directed energy weapons has been investigated through disturbed

environments determined by numerical simulations. Personnel have also contributed to

the writing of an EM-1 manual commissioned by the Defense Nuclear Agency.

The expertise of the Electromagnetic Applications Division has been used to

analyze the formation of free-electron populations during the high-hypersonic flight of

reentry vehicles and the generation of electricity based upon magnetohydrodynamic

principles. One aspect of this work has been the application of radar equations to

determine the potential for disrupting the operation of ground-based radars.

Important contributions, to the development of high-voltage plasma-opening

switches, have been made through the successful application of fluid and hybrid

simulations which have characterized parametric ranges for successful operation. This

work is directly relevant to the development of the Particle Beam Fusion Accelerator

11 (PBFA II) at Sandia National Laboratories.

In all areas, the Electromagnetic Applications Division has broad analytic,

numerical, and experimental capabilities in applied electromagnetism and continues to

be committed to the application of its expertise to the highly responsive solution of

problems vital to government and industry.

CONTACT:

Dr. Jacob L Sperling
(619) 453-6580 or
619) 535-3168 (Direct)
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1. INTRODUCTION

The beam-plasma experiment conducted by R. W. Schumacher and J. Santoru

at Hughes Research Laboratories appears to be a promising technique for the

production of high power mm wavelength radiation. This approach uses two

counterstreaming electron beams in a plasma-filled waveguide. Each beam

excites unstable waves at the plasma frequency. The nonlinear coupling of

these beam excited waves produces an electromagnetic waveguide mode at twice

the plasma frequency.

This report provides a basis for theoretical support of this experiment,

which will often be referred to as the mm wave experiment in this report. It

includes (1) a summary and analysis of state-of-the-art theories and

experiments which are relevant to this experiment, and (2) application of this

material to explain experimental observations.

The report is arranged in the following way. An executive summary is

provided in Section 2. This summarizes the main points of the relevant

literature, and the main experimental observations that can be understood

through the application of elements of this literature. A set of standard case

parameters are given in Section 3. These parameters are representative of

experimental conditions, and will be used in the following application

sections. The largest part of the report, Section 4, deals with a summary and

application of the literature. It is divided into four main physics topics--

beam focusing, beam-plasma instability, beam stabilization, and radiation

mechanisms--and a section on related experiments. Within each topic, the

relevant literature is first summarized. Then, elements of existing theory are

used to explain various experimental observations. In the section on related

experiments, the relation between this mm wave experiment and other relevant

experiments is glucidated.

• . , i i I I II I1



2. EXECUTIVE SUMMARY

Application of the results of a literature search has yielded insights

into the physics of Schumacher and Santoru's mm wave production experiment. In

some areas, there is remarkable agreement between theoretical estimates and

experimental results.

MAIN POINTS

1. The beam dynamics can be understood in terms of the Bennett pinch

and the Bennett equilibrium. There is much literature on charge neutralization

of a beam (pgs. 8-9), beam current neutralization (pg. 9), the Bennett pinch

(pg. 8), and Bennett equilibria (pgs. 9-10).

Estimates show that each beam in this mm wave experiment is charge

neutralized, and return currents are negligible (pgs. 12-14). When the beam

current is above the Bennett threshhold, it should pinch. The beam should be

constricted, or focused, by it's self generated magnetic field, whose energy

exceeds the beam's perpendicular thermal energy (pg. 14). The experimentally

determined profile of the focused beam can be fit with a Bennett equilibrium

profile. The theoretical values for the beam profile radius are in good

agreement with the experimentally measured ones (pg. 15).

2. The dominant beam-plasma Instability is the Cerenkov instability of

each beam. The literature treats a plasma-filled waveguide, for which the beam

radius is the same as the guide radius (pgs. 16-19), the beam radius is much

less than the guide radius (pg. 19), or the beam radius is arbitrary (pgs. 19-

25). There is also literature on two counterstreaming electron beams in an

unbounded plasma (pgs. 25-27).

Calculation indicates that the dominant beam-plasma instability in the

mm wave experiment is the Cerenkov beam-plasma instability of each beam, which

produces waves at the plasma frequency wpe" The axial wavevector kz satisfies

the Cerenkov condition wpe - kzvb, with vb the beam velocity (pg. 27). When

the beam is thin, and concentric with the guide, the modes excited are

axisymmetric TMOnp modes (pg. 28). The waveguide wall does not have a

stabilizing effect when the beam edge is more than a couple of collisionless

2



skin depths distant, which is the case in this experiment (pg. 28). The effect

of the radial wall is to quantize k ; the perpendicular wavevectors are

constrained to be discrete because of boundary conditions involving Bessel

functions (pgs. 27-28).

3. The stabilization of beam-plasma instabilities can be understood

within the context of beam trapping and nonlinear parametric instabilities.

Most of the literature on beam saturation deals with unbounded plasmas.

(However, quasilinear beam stabilization was analyzed for a beam in a plasma-

filled waveguide (pgs. 42-43)). Beam trapping calculations usually consider a

spectrum of large amplitude waves with one-dimensional wavevector along the
beam direction (pgs. 33-34). Nonlinear stabilization mechanisms, such as the

parametric modulational instability, have been invoked when the condition for

strong turbulence is satisfied (pgs. 34-41). The nonlinear development of

parametric instabilities can give rise to Langmuir collapse and soliton and

caviton formation (pg. 41). Nonlinear stabilization by weakly turbulent

scattering processes is well known (pgs. 41-42).

Since analysis shows that the beam-plasma instability in this experiment

is in the strong hydrodynamic regime, the beam can trap rapidly. The growth of

beam unstable waves could lead to beam trapping and wave saturation on the time

scale of a few linear growth times, which for typical parameters is of the

order of a few ns (pgs. 43-44). The beam trapping estimate for the wave energy

density indicates a level of unstable waves which is high enough to satisfy the

strong turbulent condition for the onset of parametric instabilities (pg. 45).

In this experiment, however, electron and ion collisions can be high enough to

reduce or even quench the development of these instabilities (pgs 45-48).

This means that it is the large amplitude, beam excited modes which take part

in the three-wave interaction which produces 2L"pe radiation (pg. 48).

4. The magnitude and scaling of the 2wp, radiation power is consistent

with weak turbulence estimates. Analysis for the parameters of this experiment

indicate that the process responsible for the 2wpe radiation is the three-wave

interaction, in which two longitudinal wpe waves merge into a transverse 2wpe

wave. Kinematics and power estimates are well known for this process within

weak turbulence theory (pgs. 53-55). The strongly turbulent state of Langmuir

collapse can also lead to 2Wpe radiation. This can occur when the two wpe

3



waves In the above three-wave interaction are those which are trapped in

cavitons (pg. 56).
The process which produces the 2wpe radiation in this experiment is the

merging of two quasilongitudinal wpe waves, each excited by one of the beams,

into a transverse wave near cutoff with kz - 0 (pg. 59). There is no radiation

from one beam alone, which argues against a strong turbulence process (pg. 64).

Weak turbulence estimates, folding In beam pinching and beam trapping, are

remarkably consistent with experiment. Momentum conservation for the three-wave

interaction is reflected in the experimental observation of voltage tuning (pg.

59). The scaling of the 2wpe power with beam current is in reasonable

agreement with the observed scalings (pgs. 60-63). The magnitude of the peak

power radiated is the same order of magnitude as the experimental value

(pg. 61).
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3. STANDARD CASE PARAMETERS

To simplify those application sections in which we make numerical

estimates and predictions about the mm wave experiment, we chose a "standard"

set of parameters. This is a "standard case" of parameters which is

representative of the experimental conditions prevailing when data was

accumulated for scaling plots. Since many parameters were changed in different

runs of the experiment, the parameter space is huge. We can change individual

parameters as needed in the application sections.

"STANDARD CASE"

1. Size of waveguide device (refer to Figure 1)

Length = L - 15 cm

Radius = rg ~ 1.9 cm

2. Background neutral gas parameters

Helium gas

Pressure = P - 40 mTorr

Neutral density - nn - 1.5 x 1015 cm 3

3. Background plasma parameters

Electron density = ne - 2.5 x 1012 cm 3

Ion density a ni - ne
Electron temperature a Te - 5 eV

Ion temperature - Ti - 1/10 Te - 0.5 eV

Plasma frequency wpe - 9 x 1010 s"1

Collisionless skin depth a 6 0 - C/Wpe 0.3 cm

Electron Debye length = -De - (T/4mn2) 1 / 2  10- 3 cm

Electron thermal speed - vTe - 1.3 x 108 cm/s

Electron neutral collision frequency - en ~ 108 s '

Ion neutral collision frequency -vin 106 s

Electron ion collision frequency vei 1 0 7 s '

5



4. Beam parameters

Beam pulse duration T - 20 is

Energy of beam one = Ebl = energy of beam two = Eb2 - 30 keV

Lorentz factor -Yb ~ 1.06

Current of beam one Ibl 2 current of beam two - Ib2 - 2 Amp

Ratio of injected beam density to plasma density - (nb/ne) 7 x 10-5

Ratio of focused beam density to plasma density - (b/n e 6 x 10-4

Injected beam cross section - Ab - vr2 - 7 cm2

6
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4. SUMMARY AND APPLICATIONS OF LITERATURE

4.1 MAGNETIC SELF FOCUSING

4.1.1 Summary of Literature

4.1.1.1 Bennett Pinch Condition

An electron beam passing through a plasma can magnetically self focus,

or pinch, if its current is sufficiently large. The beam tends to spread owing

to its perpendicular thermal pressure nbTbi, where nb is the beam density

and Tb" is the perpendicular beam temperature. At the surface of the beam

however, the magnetic field B, which is produced by the beam current,

generates a magnetic pressure, B'/,, which tends to constrict the beam. When6 9 2
the magnetic pressure exceeds the thermal pressure, Ba/8w > nbTbi, the beam

self focuses. (This assumes the plasma has charge neutralized the beam,

otherwise the electrostatic forces have to be added to the thermal pressure.)

The critical current is given by the Bennett pinch condition, Ref. 1:

12 > 3.20 x 10°10 nbTb± (1)

where Ib is in amps, nb in cm3 , Tb± in eV, and Ab is the cross sectional area

of the beam in cm2. This condition is actually identical to the condition for

pinching instabilities in a plasma comprised of two warm counterstreaming

electron beams, as discussed in the text by Krall and Trivelpiece, Ref. 2.

Before estimating whether the Bennett pinch condition can be satisfied

for a particular beam plasma system, one has to estimate the magnitude of

charge and current neutralization of the beam. If the beam charge is not

completely neutralized, there is an additional radial electric force in

addition to thermal expansion. In addition, the magnitude of beam current

neutralization by plasma return currents gives the effective beam current to

use in the pinch condition.

4.1.1.2 Charge Neutralization

Charge neutralization occurs on the characteristic time scale (4wa) ",,

where a is the plasma conductivity. This is the time for plasma charges to

8



redistribute to nullify the beam Ez field. For a finite length system of
length L, in which the beam pulse duration time T >> L/c, the condition of

charge neutrality requires 4wo >> (L/a) 2
T

" 1 , where a is the beam radius. (See

Sudan, Ref. 3.)

4.1.1.3 Current Neutralization

Current neutralization can occur because of Lenz's law. When an

electron beam is injected axially into a cylindrical plasma, an induction

electric field is generated in the beam head owing to the time rate of change

of B8 as the beam passes a particular position. This induced electric field
acts on the plasma electrons to produce a current opposite to the beam current

and to reduce Be . For a finite length system of length L, in which the pulse

duration T >> L/c, the condition for current neutralization is

T >> 4waa2/c2  , or 6s << a (2)

where 6 s a (c2 /4wo(TI) 1 2 is the skin depth, Ref. 3. What happens physically
is that if the beam radius a >> 6 s , then the beam self field Be for r > a is
neutralized and Ez vanishes in this region; the electrons outside the radius
r + 6s are screened from the beam current, which is cancelled by the return

current which flows almost entirely within the beam radius. For a << 6s, this
cancellation is only partial because the return current flows both within and

outside the beam radius. Other references that discuss plasma return current

when a low density relativistic beam is injected into a plasma are Refs. 4-6.

4.1.1.4 Bennett Equilibrium

Macroscopic beam-plasma equilibrium configurations can be investigated

starting from the fluid Maxwell equations. Including the effects of finite
beam and plasma temperatures, and assuming that (a) the plasma ions form a

stationary background, (b) there is no external magnetic field, and (c) beam

and plasma centrifugal effects are negligible, these are, Ref. 6:

kTb anb

n bb b eEr c

9



kT e a n e5 - E vz
ne a r r C

The Bennett condition follows from this by assuming that ne , Vbz/C = Bo

constant, and fe = ni/nb = constant; the previous equation then becomes

kTb n(b f.2 2 rr
n b 8  r (1 - e "0e) fr drnb

0

2When decreases monotonically with radius (anb/ar < 0), and B 2 > 1 - f then

there is an equilibrium configuration in which the outward forces of beam fluid

pressure and electrostatic repulsion are balanced by the inward force of

magnetic pinching. Then the solution to Eq. (4) is the Bennett profile

nb a nbo [1 + (r/a)2 ]-2 (5)

where the Bennett radius is

a 2 (6)

- (1 - e )

with kDb the Debye length of the beam electrons. For space charge neutral

equilibria,

a2 .8. b b (7)0 -2 (T b - T e
0o

4.1.2 Application to mm Wave Experiment

4.1.2.1 Introduction

The electron beam is focused as it propagates through the waveguide

plasma in Schumacher and Santoru's experimental setup. The picture in Figure

2, which is from Ref. 7, shows an example. The beam has converged to an

approximate Gaussian profile after passing through the waveguide plasma. The

10
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full width at half max decreased from 2.7 to 0.45 cm and the beam current

density on axis increased by a factor of - 30. We'll investigate whether the

beam could magnetically self focus. If this is possible, one could arrange

parameters to get optimal focusing. This could lead to (1) stronger beam-
plasma instability, because (nb/ne) increases, implying a higher energy density

of beam unstable plasma waves which could couple to produce a higher power

output at 2"pe, and (2) higher emission efficiency at 2wpe, because the

efficiency Is measured relative to the electron beam energy flux at the input

of the guide.

4.1.2.2 Beams are Charge and Current Neutralized

We first estimate the magnitude of charge and/or current neutralization

in Schumacher's experiment in order to determine which form of the pinch

condition to use and what effective beam current to use. The plasma

conductivity will be needed; it can be estimated as

2
~y (8)

ven

where "en is the electron neutral collision frequency, and wpe is the

background plasma density. (The electron neutral collision frequency is larger

than the electron ion collision frequency In this experiment, shown later.)

The electron neutral collision frequency is

V en N Oe.Hennv Te (9)

where ae-He is the total elastic cross section of electrons in He, nn is the

density of neutral helium, and vTe is the background electron thermal speed.

For Te - 5 eV, the cross section is ae.He - 5 x 10- 1 6 cm2 from the graph in

Figure 3, taken from Ref. 8. For the standard case parameters, Yen - 108
s"1.  (For comparison, vel - 3. x I06 nQXei/T3/2 _ 107 s-1 for the standard

case.) Thus the conductivity is estimated to be of the order of
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Figure 3. Total elastic collision cross sections of electrons in
H, H2' and He (after Brackmann, Fite, and Neynaber, 1958;
and erode, 1933). (From Ref. 8)
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, 6.25 x 1012 s 1

The charge neutralization condition is 4wo >> (L/a) 2.r7. For the

standard case, 4 ro - 8 x 1013 s-1, while (L/a) 2 T-1 - 3 x 106 S-1, so that the
condition for charge neutralization is satisfied.

The condition for current neutralization is 6s << a. Using the standard

case parameters, ds - 15 cm, so that 6s >> a and return currents can be

neglected.

4.1.2.3 Beam Subject to Bennett Pinch

The condition for the electron beam to pinch and self focus under these

conditions can be written from Eq. (1) as

bI b  ne  Ab> 2.26 x 1 b e

b4. e 102

with Ib the original beam current. For the parameters in the standard case,

the pinch condition would be satisfied as long as

T b, > 0.4
bJ.

For Ib - 2A for each beam, the beam could self focus as long as Tbi _< 10 eV.

This is within reason for the experiment. Of course, TbL could increase

because of collisions, and because of quasilinear stabilization of beam

instabilities. The mean free path for these high energy electrons is very
long--of the order of 100 cm for electron-neutral collisons when Eb - 30 keV,

so one wouldn't expect much broadening of the transverse temperature

distribution due to collisions. Quasilinear stabilization, on the other hand,

could lead to broadening of the parallel and perpendicular beam temperatures,

as will be discussed in the section on beam stabilization.
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4.1.2.4 Bennett Equilibrium

The experimentally measured focused beam profile can be fit with a

Bennett profile, Ref. 60. Using the standard case parameters and a measured

value of nb - 3 x 109 cm "3 , this gives a Bennett radius of a - 0.48 cm

for Tb6 - 10 eV. This is in remarkably good agreement with the Bennett radius

value needed for the experimental fit to the Bennett profile. This value of a,

moreover, is consistent with the Bennett temperature, that is, that temperature

required for pinching to occur.

4.1.2.5 Implications

It appears that the beam self pinches and attains a Bennett equilibrium

configuration. The resulting increase of (nb/ne) leads to an increased

efficiency of 2wpe radiation, because the radiated power scales as (nb/ne)P,

where p is some power > 1 which we'll discuss in later sections, while the

input power scales as nb in the unfocused beam.

We note from the pinch condition that, for any temperature, self

focusing can be attained by increasing 1b, and thus nb and/or Eb. If the beam

is focused because of the pinch effect, there should be a detectable

threshhold. For example, for a beam of low enough current so that Ib 1A, we

would expect to see no focusing in the standard case because the pinch

condition would require the perpendicular beam temperature to be too

low, T < 2.5 eV < Te.

4.1.2.6 Work to be Done

Even though it appears that the beam dynamics are fairly well understood

in terms of beam pinching and Bennett equilibrium, there are topics which need

further investigation. These include (a) analysis of loss mechanisms which

prevent Tb. from increasing above the Bennett temperature, (b) effects of beam-

beam coupling on beam dynamics, (c) evaluation of parameter regimes in which

return currents, and their effects on beam pinching, need to be considered, (d)

effects of vertical magnetic fields on beam pinching, and (e) optimization of

beam focusing with respect to the strength of the beam-plasma instability and

the three-wave interaction power output.
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4.2 BEAM-PLASMA AND TWO-STREAM INSTABILITIES

4.2.1 Summary of Literature

4.2.1.1 Introduction

There have been a multitude of papers on beam-plasma and two-stream

instabilities. We take beam-plasma to refer to the interaction of a low

density, (nb/ne) << 1, beam with a background plasma, while two-stream will

refer to counterstreaming plasmas with near equal densities. The papers

relevant to Schumacher and Santoru's experiment comprise a small subset. These

include papers on beam-plasma instabilities in a plasma in a waveguide, which

take into account the finite radial , and rarely, the finite axial extent of the

system, as well as a few papers concerned with the instability of a system of

two counterstreaming electron beams in a background plasma. Several of the

papers we describe below overlap the various subsections.

4.2.1.2 Beam-Plasma Instabilities in a Plasma-Filled Waveguide

First we discuss some results on beam-plasma instabilities in a plasma-

filled waveguide, with and without an axial magnetic field.

a. Beam Radius - Guide Radius: Axisymmetric Modes

References 9-11 are referred to as Aronov (a)-(c). Aronov (a) analyzes

beam-plasma instabilities arising when a relativistic low density beam is

injected into a plasma-filled waveguide, as well as beam relaxation by

quasilinear processes, and electromagnetic radiation produced by the beam-

plasma instability. Longitudinal waves are not eigenmodes of this beam-plasma

system: the beam excites arbitrary non-electrostatic modes. The unstable waves

have a small electromagnetic component which produces a finite Poynting flux,

and thus electromagnetic radiation. The model system in (a) is a uniform
plasma-filled cylindrical waveguide with a low density electron beam of radius

equal to the guide radius. All components are cold, and the beam can be
relativistic. In this finite radial system the dispersion equation describes

an electromagnetic field with nonvanishing components Er, Ez and B9, with
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where rg is the guide radius, and Er(r) and BO(r) are related to Ez(r). There
are two types of unstable solutions. One is the analog of the Cerenkov type
instability in an infinite plasma, which occurs as a result of a resonant
interaction between an electron beam mode and a waveguide mode, in which the

condition w a k - vb is s~tisfied. This results in the excitation of a quasi-

longitudinal wave with a spectrum

SkzVb + 16 =(w + i6

"an zb n pe n

u 2k2 2-21/nb n zr eb
6 n • ( - pe Z + r (11)

n z g

where ln/rg is essentially the radial wavenumber kin' with the azimuthal
wavenumber being zero because the mode is described by the axisymmetric Jot and

kz is the axial, or longitudinal wavenumber, rg is the wavegulde radius (and
thus the beam radius), Yb is the Lorentz factor for the beam, Yb = 1 -
Vb2/c2)1/23. For Yb • 1, there is no dependence of the growth rate on the
radial wavenumber, but for Yb " 1, the growth rate maximizes for short radial

wavelengths, 2 The radial wavenumber is discrete, and there is a
minimum k, ft 2.4/r . The unstable wave is essentially electrostatic,

with Ern ' (kin/kz)E zn' with a small departure from electrostatic behavior due
to the finite magnetic field of the wave

6n vb
Ben pe (Z- Ern (12)

The other unstable solution corresponds to a wave propagating at nearly

right angles to the beam directed velocity, i.e., io the limit kz + 0 or IWI >>

kzvb, where vb is the beam directed speed. This Is an aperiodic, Weibel type

instability, with growth
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This instability is similar to the hydrodynamic sausage instability and

corresponds to the constriction of the plasma into individual filaments.

Aronov (b) generalizes the results of (a) to the case of a magnetoactive
plasma in a waveguide. Aronov (c) investigates the conditions under which an

electron beam injected into a waveguide excites only a single mode with a
narrow linewidth. In the process they review work on the interaction of
relativistic electron beams with plasmas, including the effect of finite radial

dimensions. Both unstable volume and surface waves are considered. (This was

done to investigate the possibility of using beam plasma systems to produce
high power generators and amplifiers of electromagnetic radiation, using the

fact that the beam excited waves are inherently electromagnetic.) Recent
refinements on beam-plasma instability in waveguides have included the effects

of an external magnetic field and finite beam temperature. See Refs. 12-17.

b. Beam Radius = Guide Radius: Non-Axisymmetric Modes

We review aspects of Tajima's paper, Ref. 17, which are relevant to
Schumacher and Santoru's experiment. The stability of a relativistic electron

beam-plasma system in finite (cylindrical) geometry is investigated. The

analysis is based on collisionless fluid theory. By employing the full set of
Maxwell's equations, both finiteness and relativistic effects are included.

One of the cases analyzed is the bounded beam-plasma system with no external

magnetic field, and with both beam and plasma radius equal to the waveguide

radius (conductor surface). The result generalizes Aronov's results to non-

axisymmetric modes, that is, finite m in a representation of the electro-

magnetic field component as

u r
E zmn(r) - Ezn(r) m (14)

(Compare with Eq. 10.) For a nonrelativistic beam, the results for both the
Cerenkov type beam-plasma instability and the filamentary, or Weibel
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instability, are similar in form to Aronov's results, and indeed, to the

infinite plasma result. There is not a significant stabilizing effect by the

finiteness of the system. The modes are merely quantized in the radial

direction: that is, kLmn z (mn /r ) has to satisfy Jm(Umnrg) 0.

c. Beam Radius << Guide Radius: Axisymmetric Modes

Another relevant case in Tajima's paper is a thin beam In a bounded

plasma, in which the beam radius Is much smaller than the plasma radius. For

the Cerenkov beam-plasma instability, the modes with higher azimuthal mode

number m in this case can be neglected; the plasma eigenmodes with higher m

cannot couple with the beam at the center of the plasma, where the plasma

eigenmode amplitude vanishes for m > 1, that is, for Ez(r - 0) - 0 for m > 1.

(This effect has been observed experimentally for a weak nonrelativistic beam

in Ref. 18.) The strength of this instability decreases with increasing axial

magnetic field and decreasing plasma radius. In addition, the strength of the

instability is characterized by the integrated beam density over the entire

plasma cross section, instead of by the local plasma density. (That is, what

enters In the dispersion relation is not the local density of the beam, but the

integrated beam density over an entire cross section of the plasma with the Oth

order Bessel function as a weighting factor.) This would imply that a pinched

beam would not have a much stronger interaction than an unpinched beam. Tajima

also discusses the surface filamentary instability for a thin hollow beam,

finding strong dependence of the growth rate on the azimuthal mode number, with

strength determined again by the integrated total current.

d. Arbitrary Beam Radius: General Modes

A recent analysis of beam-plasma instabilities in a bounded plasma was

published by Michael E. Jones in Ref. 19. The paper reports on a linear

elgenfunction analysis of the beam-plasma instability for an annular beam

interacting with a plasma which fills a coax line. The geometrical

configuration is shown in Figure 4. The dispersion matrix, however, contains

various limits including the cylindrical waveguide (no center conductor, rc 0

0), a solid beam (rI + 0), both thin (re << rd) and fat beams (re - rd), and

the infinite plasma case (rd + -m. The beam and plasma are modelled by

relativistic cold fluids, including collisions, and the dispersion relation is
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Figure 4. Most general geometrical configuration considered
in the analysis. (From Ref. 19)
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three-dimensional and electromagnetic. The radial elgenfunction structure is

discussed and numerical examples are given for a particular parameter regime

corresponding to a very dense plasma (1017-1020 cm'3), in which the radial size

of the coax plasma is of the order of 35 colllsionless skin depths 60 (60 =

c/wpe), the thickness of the annular beam is 15 6o, and (nb/ne) _ i0- 3 . with Yb

- 7.

These are the general trends which emerge from this analysis in Ref. 19

and which give some insight into the behavior of beam-plasma instabilities in a
bounded plasma. For the case of a solid beam filling the waveguide or drift

tube (no center conductor) the TE and TM modes decouple, with the unstable

modes being the TM modes. The dispersion relation reduces to the one given by

Tajima in Ref. 17. In this case, when the uniform beam and plasma have the

same radial profile and are in contact with conductors, the only effect of

finite radial dimensions is to quantize the perpendicular wave vectors.

However, when the profiles are different, and the beam is thinner, this

quantization is complicated by other effects. For example, for non-

axisymmetric modes (m * 0) the TM and TE waves are coupled (although the

coupling is weak for small (nb/ne)). Also, surface like waves appear whose

elgenfunctions are largest at the beam edges. Unstable waves are evanescent

outside the beam radius, so that the quantization of the perpendicular

wavevector is determined by the beam thickness.

Numerical results for a typical spectrum for the unstable modes of the

general geometry system, shown in Figure 5, are qualitatively the same as would

be obtained for the infinite homogeneous system. The growth rate maximizes at

kzvb - wpe, which corresponds to the Cerenkov instability, which is nearly

electrostatic. The part of the spectrum at kz 0 0, referred to as the

electromagnetic Weibel, or filamentary, instability, is associated with an

increase in the magnetic components of the elgenfunctions. The elgenfunctions

corresponding to the peak growth rate in Figure 5 are shown in Figure 6 [rm Z

(re + ri)/2 and m - 10]. Figure 7 shows the dependence of the growth rate on

kr or k for m - 0. The modes of the finite system can be correlated with the

modes of the homogeneous system with a suitable quantization of the

perpendicular wave vector. In addition, if the conductors are more than a

couple of collisionless skin depths distant from the beam, the modes are

virtually unaffected by their presence. But when the conductors are closer,
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the electric field of the elgenfunctions has to go to zero more rapidly outside

the beam and the growth rate is reduced.

Jones also presents several particle-In-cell (PIC) simulations in order

to test the validity of the elgenfunction analysis. This is because there is

some question about how smooth the radial profiles can be before the continuous

spectrum alone determines the response of the system, and eigenfunctions don't

exist (Ref. 20). It was shown in Ref. 21 that radial eigenfunctions do exist

in the system that Jones studied provided that the beam profile is not too

smooth. The PIC simulations indicate that while the elgenfunctions probably do

not describe the entire response of the system, many of the features of the

analysis were oberved in the simulations. The quantitative agreement between

simulation and linear theory was estimated to be about 50% for the growth rate,

which Jones considers adequate considering the effect of numerical collisions.

e. Convective Instability

All the papers referred to above assume that k is real and that W is

imaginary, that is, that the instability is absolute. In an infinite plasma,

of course, the beam-plasma instability can have both temporal and spatial

growth. For a cold beam, under the conditions (Tb/Eb)1/2 << (nb/Zne)1/3 << 1,

the temporal growth is given by 8 - /'I (nh/2n )173 w p. while for a cold beam,
under the conditions (Tb/Eb) 1 12 << (n /6n )173(Eb/T1)1/3 << 1, the spatial

growth is given by k, ~ /- (nb/6ne)/ (Eb/Te)'/3 (Wpe/vb), Ref. 22. When the

plasma and beam are both stone cold, i.e., zero temperature, the instability is

absolute, Refs. 23-24.

A review by Bers (Ref. 24) covers topics In the space-time evolution of

plasma Instabilities. In one section, he discusses the question of convective

versus absolute Instability for the electrostatic instability in a 1-0 model of

counterstreaming beams propagating through a plasma. We summarize this here.

The unperturbed particle distribution functions have Lorentzlan shapes:

f e(v) (ae/W 2 ne 2 2
(v + a e)

(a b/W 2 )nb (ab/ 2 ) (15)f ( Iv-" y (Iv + v + a)b (IV - V 12 + Q 2 )2  (I+  12 + •c12))

b b b b
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The plasma particles have density ne, with Ge a measure of their velocity

spread. The two beams each have density nb and velocity spread ab around vb,

the drift velocity. For electrostatic waves with k along vb, the linearized

Vlasov-Polsson equations lead to the following two dispersion relations:

D(ko) - 1 - - 21
(w t ika e)2  b - kvb t kc2b) (w + kvb t ikab)2

(16)

Here D+(kw), D.(kw), are valid for lm(w/k) > 0, lm(w/k) < 0, respectively.

This dispersion relation applies to two counterstreaming electron beams

propagating through a background unbounded plasma. The main results of a

numerical stability analysis of this dispersion relation follows, Refs. 25 and

26. When ae a = b - 0 (cold plasma and cold beams), there are two possible

absolute instabilities: one at w • wpe' and one at w - ib[(l1/ 4) -

((pe/wb) 2]112 , which is unstable only if (wp/wb) < 1/2. For (wp/wb) > 1/2, the

solution is dominated by the instability at w - wpe (the beam-plasma

instability), while for (wp/wb) < 0.2 it is dominated by the other instability

(the two-stream instability; for cope = 0, one has the case of two counter-

streaming beams). For 0.2 < (cp/wb) < 1/2 the two instabilities interact. It

appears that this would not be important for Schumacher and Santoru's

experiment, because (nb/ne) << 1. Finite velocity spreads, ae * 0 and ab * 0,
have different effects on these two types of instabilities. For wpe = O, i.e.,

counterstreaming beams, increasing ab reduces the two-stream growth rate, until

this absolute instability vanishes at ab Vb; at instability threshhold (i.e.,

b <S vb) the instability is absolute. For (wp/wb) < 1/2, increasing ab rapidly

reduces the growth of the two-stream, but to a much lesser extent, the beam-

plasma growth rate. Increasing ae has the opposite effect in this regime; it

can even increase the growth of the two-stream. For (wpe/wb) > 1/2, increasing

Ob reduces the growth of the beam-plasma instability but it remains absolute;

finite me, on the other hand, makes the instability convective. This latter

regime may be the relevant one for the mm wave experiment.
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Reference 27 investigates counterstreaming instabilities arising in

three component electron plasmas both analytically and numerically. This is a

general non-symmetric case in which two beams of unequal density and unequal

drift velocity counterstream through a background plasma. The analysis is for

an infinite homogeneous plasma, and only longitudinal modes are considered.

The parameter region investigated corresponds to (np/nb) < 1. The spectrum of

the two-stream instability, which occurs in the symmetric counterstreaming beam

case without background plasma, can be transformed into wave spectrum having a

complex structure; the instability changes from absolute to mixed convective

and absolute.

4.2.2 Application to mm Wave Experiment

4.2.2.1 Introduction

We apply quantitatively some of the results discussed in the summary

above to Schumacher and Santoru's experiment. Section (e) in the summary above

discusses the nature of the instabilities arising in a system of two

counterstreaming beams in a plasma. For (nb/ne) << 1, the solution is

dominated by the instability at wpes that is, the Cerenkov beam-plasma

instability of each beam. (There may be coupling in the small kz limit, kz +

0, which affects the Weibel, or filamentation instability, but this has a lower

growth rate.) In the following, we'll concentrate on the beam-plasma

instability.

4.2.2.2 Beam in Plasma-Filled Wavegulde: Beam Radius a Guide Radius

Equation (11) gives the growth rate for the Cerenkov beam-plasma

instability under the conditions assumed in Aronov (a), Ref. 9. The growth rate

increases slightly with kI because of the presence of the Yb factor in the

growth rate. There is a minimum kI which is kI -2.4/r , where rg is the

waveguide radius. For the standard case, k. ~ 1.26 cm"1 . The axial wavenumber

kz is given by kz a Wpe/Vb ~9 cm"1 . For the standard case, the growth rate is

of the order of 6 - 0.07 wpe - 6 x 109 s"I for the lowest order axisymmetric

mode, with growth increasing only very slightly as the number of nodes in the

radial elgenfunction increases. There is plenty of time for an instability to
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develop, since a growth period is of the order of 0.2 ns in this example, and
the beam is on for - 20 us. This unstable -ode is quasilongitudinal, and

essentially electrostatic, with Er - (k1 A z)Ez, so that for this lowest order

mode Er - 0.14 Ez , and the electric field of the mode is predominantly in the

axial direction. The small departure from electrostatic behavior is due to the

magnetic field of the wave; in this case, Be - 0.02 Er*

The Weibel, or filamentary instability, in the limit kz + 0, has a

growth rate which increases as k1 becomes much larger than the inverse

collisionless skin depth. The collisionless skin depth for the standard case

is 6o ~ 0.3 cm, while for the lowest order axisymmetric mode, k. - 1.26 cm"1 so

that the growth rate is not a maximum for this mode. In fact, the growth of
the aperiodic instability would maximize for M > 8, that is, for axisymmetric

modes whose radial elgenfunctions have more than 3 nodes. The ratio of the
maximum growth rate of the filamentary to the Cerenkov instability is of the

order of 0.1 for the standard case.

4.2.2.3 Thin Beam: Axisymmetric Modes

When the beam is very thin, and concentric with the guide, the modes

that are excited should be axisymmetric TMOnp modes. This is because the
wavegulde modes for m > I have Ez(r-O) 0 0, and therefore can't couple with the

beam. The stabilizing effect of the wall can be estimated by comparing the

magnitude of the collisionless skin depth in the plasma to the distance of the

beam edge from the wall. For the standard case, 60 - 0. 3 cm. If the beam

focuses to an effective radius of 0.5 cm in the interaction region say, then

the distance between beam edge and waveguide wall is 5 - 6 collisionless skin

depths, so that one would not expect strong stabilizing influences from the

wall. Note, however, that as the plasma density decreases, the collisionless

skin depth increases as n-1/2 , and the stabilizing effect of the wall conductor

might be felt. If the background plasma density were 2 x 101 1 cm"3, the beam

edge would be - 180 from the guide wall, whose stabilizing effect could lower

the growth rates. It appears then, that a highly focused, thin beam can be

strongly unstable in even a low density plasma, while a weakly focused, fat

beam needs a higher density background plasma to provide more shielding between

it and the stabilizing conducting wall of the guide.
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4.2.2.4 Thermal Effects on Beam-Plasma Instability: Limits on k

Beam temperature effects cut off these beam plasma instabilities when

the longitudinal and/or transverse spread of the electron velocities in the

beam are large enough so that

161' ' )2 k2 (AV ) 2
< k2 (vb, ,1

where (aVb)2 . T. /mey6 an v 2 /mY2 are the longitudinal and transverse=t Tbl/m b a i bi / bb

beam electron speeds, and T and T are the longitudinal and transverse beam

temperatures. The condition 6 < kz(AVb,) could be satisfied if (6/wpe)

< (Tb /E b)1/2, which could put an upper bound on Tbl. Since (6/wpe) - 0.07 for

the standard case, this implies that Tb, < 150 eV in order for the Cerenkov

instability to go.

The condition 6 < kLvb puts a limit on the magnitude of either k, for

fixed T,,, or Tb for fixed k. For example, for fixed ki - 2.4/rg ~ 1.26

cm 1, this implies that TbL has to be < 2 keV for the standard case. On the

other hand, if T bi 10 eV, then all kI < 30 cm"I can be unstable. Since ki =

u/rg, this implies that a large number of modes can be unstable for realistic
setups. In general, then, it appears that the unstable spectrum in kI is quite

broad, decreasing in width as the beam thickness decreases. The kz spectrum,

on the other hand, is quite narrow, of the order of Akz - (nb/ne)"/ 3kzo in the

linear regime: for the standard case, this width is of the order of 0.08 kzo.

4.2.2.5 Quantization of kz

We make a point about the quantization of kz  in Schumacher's

experiment. Because the endplates of the drift tube are actually constructed

of the same material as the cylindrical walls (porous conductors so that

electrons can get in but waves can't get out), the setup is more like a cavity

resonator. As such, kz, which can take arbitrary values for a waveguide, has

to take discrete values in order to satisfy the boundary conditions on the
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electromagnetic fields at the walls z - 0 and z - L. This implies k zL = p ,

where p is an integer. Fields inside such a cavity are set up in such a way as

to allow integral half cycles of variation in the axial direction owing to the

boundary conditions. A good discussion of the solutions of the wave equations,

boundary conditions, and mode solutions for various cavity resonators is given

in Ref. 28. Now even though kz is quantized, the spacing between the allowed

values are small enough so that the Cerenkov resonant condition could be

satisfied; that is, w/L < (nb/ne)1 /3kz, the latter being the width of the

spectrum in kz at maximum growth. For example, w/L - 0.2 cm"I for the standard

case, while (nb/ne)/ 3kz - 0.7 cm"1 , so that the Cerenkov condition can be

satisfied. We note that there may be no resonant Cerenkov instability if the

plasma density is too low or if the beam energy is too high. This could be

realized for example, if ne were - 2 x 101 I cm 3 , and Eb were - 90 keV; then

Akz ~ 0.1 cm"1 , and w/L > Akz. One would expect lower growth at these

parameters than in the infinite plasma case, but it's hard to see how to verify

this expectation experimentally in the mm wave experiment.

4.2.2.6 Work to be Done

We think that the direction for immediate theoretical work is to include

a counterstreaming beam into Michael Jones's (or possibly Toshi Tajima's)

analysis and grind out results for parameter regimes appropriate for

Schumacher's experiment. The eigenfunction analyses appear to agree with

particle-in-cell simulations to within a factor of - 2 for the growth rates

(M. E. Jones, Ref. 19). In addition, Jones has shown that discrete eigen-

functions and spectra do exist provided that the beam and plasma profiles are

not too smooth. In Schumacher and Santoru's experiment, it appears that the

plasma profile is fairly flat radially, as shown in Figure 8, and can be taken

essentially uniform: the beam profile is quite peaked centrally at least at

the opposite end of the waveguide to injection, and may possibly be

approximated as a uniform step. If continuous spectra were dominating the

plasma response, one would expect to see the ramifications of this in the 2wpe

radiation in the mm wave experiment; that is, one would expect to see a broad

spectrum of radiation, and this does not appear to be the case. Furthermore,

30



CIRCULAR
WAVEGUIDE

E-BEAM

€ ern -PROBE
SCAN\I i I

RECTANGULAR
WAVEGUIDE
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it would appear to be cleaner and faster to apply available eigenfunction

analysis literature to the problem, and to then include other effects if the

computed growth rates lead to gross inconsistencies in comparing theory with

experiment.

We think that the results of an eigenfunction analysis, neglecting

temperature effects, might lead to the following results in general. Since

(nb/ne) << 1, the beam-plasma Cerenkov instability will dominate for finite kz ,
with a growth rate symmetric in kz, that is, the same for both the forward and

the backward propagating unstable waves (assuming equal energy and density

beams). The growth rate for each beam would be given by Jones's one beam

result, Ref. 19, in the appropriate beam-plasma geometrical configuration, with

the replacement of kz with quantized kz, because the drift tube in the mm wave

experiment is actually a cavity. We need to work out the growth rates for the

parameter regimes of interest for the mm wave experiment. We should

investigate both bulk and surface modes. An additional geometrical

complication would be the case in which the beams are both off center, as in

the experiments with a vertical magnetic field, Ref. 60.

Couplings might occur between beam instabilities in the small limit, kz

+ 0, for the filamentary instability, and we will have to work this out.

Because of finite temperature, we will need to investigate the convective

nature of the instability as well. This could possibly be done within this

analysis by keepingw real and solving for complex k. We haven't determined at

this point whether the instabilities in Schumacher's experiment are absolute or

convective in nature, or both, but we make a point here. In Schumacher and

Santoru's experiment, there are boundary conditions that have to be satisfied

by the electromagnetic fields, because of the finite radial and also the finite

axial dimensions of the drift tube. This would imply that both kI and kz would

have to be real in order to satisfy these conditions.
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4.3 BEAM STABILIZATION

4.3.1 Summary of Literature

4.3.1.1 Introduction

Beam stabilization in a bounded plasma has been treated very little in
the literature. Much theoretical work has been done, however, for the beam in

an infinite homogeneous plasma. The main relevant mechanisms include beam

trapping, nonlinear stabilization in either the strongly turbulent or weakly

turbulent regimes, and quasilinear stabilization. We summarize some of the

literature on these processes in an infinite plasma.

4.3.1.2 Beam Trapping

As a simple example consider a I-D beam excited spectrum which might be

excited, for example, by a cold beam in a plasma in a strong magnetic field, in

which wpe " ne, where wpe is the plasma frequency and Oe is the electron

cyclotron frequency. Unstable modes with wavevectors only along the beam

direction of motion have to be considered. The maximum growth rate for the

Cerenkov instability is 6 max (nb/2n )1/3wpe, which peaks at kzo = Wpe/vb with

a half width given by Akz - (nb/ne)i/3kzo. As the wave exponentiates, the half

width after N-foldings (N - Smaxt) actually narrows to Akz(N) ~

N'1 /2(nb/ne)1 /3kzo , so that in the limit (nb/ne) << 1 and N >> 1, the spectrum

is quite narrow and the electric field is nearly a purely sinusoidal wave. A

model proposed by W. E. Drummond et al., in Ref. 29, and computed in detail by

T. M. O'Neil et al., in Ref. 30, describes trapping of the beam electrons by

the monochromatic unstable electrostatic wave potential. As the wave grows, it

reaches an amplitude large enough to reverse the direction of the beam

trajectory. The sign of the energy exchange between the beam and the wave

reverses, and the beam instability is stabilized. The wave saturation

amplitude at which this occurs is given by

W E2 (nb1/3 (7
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where Wp is the energy density in the wave spectrum, and nb and Eb are the beam
density and energy. The trapping velocity of the beam electrons at saturation

is AVb - (nb/ne)1/3vb. The initial growth and saturation is rapid, occurring

typically on the time scale of a few growth times, as shown in Figure 9 from

Ref. 3. A numerical example of beam trapping using a computer simulation was

given in S. Kainer et al., Ref. 31.

4.3.1.3 Nonlinear Stabilization

For the electron beam-plasma example above, the rapid growth and

saturation of the primary excited spectrum is followed by a stage in which the

primary spectrum at kzo gives rise to secondary waves. An example is the

sideband instability, Ref. 32, although other nonlinear processes quickly

become dominant. The physical nature of the nonlinear interaction is

determined by the saturation level of the primary spectrum W p in comparison

with the quantity (kzoXDe) 2 , which is a measure of the thermal dispersion of

the wave. (Here )De is the Debye length, and kzo is the wavenumber of the

primary wave). If (Wp/neTe) < (kzoDe) 2 , the system develops by processes

which can be described by weak turbulence theory, such as processes in which

waves interact with particles and other waves but retain their essentially

linear mode character. When

W2
(ne-PT) > (kzoXe) 2 (18)

the nonlinear correction to the frequency of plasma Langmuir waves is greater

than the thermal correction and the concepts of weak turbulence are no longer

applicable. We first discuss some work on nonlinear stabilization, since this

seems the more relevant for Schumacher's experiment, and then discuss briefly

some weak turbulent processes. A good review of beam stabilization is found in

the review by R. N. Sudan in Ref. 3.

a. Strong Turbulence Processes

The following discussion is for the strongly turbulent nonlinear

development of the Cerenkov unstable wpe primary spectrum. For a sufficiently

narrow akz satisfying Akzvb/wpe < 1, the primary spectrum can be described as
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monochromatic pump wave at a frequency close to wpe , which can drive other

modes unstable through a parametric Instability. In an infinite, homogeneous

plasma, at least, the pump can couple the high and low frequency oscillations

(electron plasma waves and ion acoustic waves) which exist in the plasma in the

absence of the pump. Some of the various instabilities which can result are

the OTSI (oscillating two-stream Instability) or the modulational instability,

in which a high frequency electron fluctuation at w - wpe and a purely growing

ion oscillation are driven unstable, and the decay instability, when high

frequency electron oscillations and low frequency ion-acoustic oscillations are

driven unstable. The modulational instability represents a catastrophic growth

of the Initial wave modulation. This occurs in the regime in which the

wavenumber of the low frequency response K is << the pump wavenumber kzo. For

short waves, (kzoDe) 2 > me/mi, the maximum growth rate of the modulational

instability Is

mod W e 1/(19)max ~ pi in e T e

for (Wp/neTe) > me/mi. The decay instability competes with the modulational

instability for short wavelength waves when K kzo It has a growth rate near

the three wave resonance surface of

W 1/2

6Dec ~ (--! KcsnP cos)nee

where cosO a k zo (kzo + K)/tzojk z +K. A recent review which covers the

development of Langmuir plasma turbulence is given by V. E. Zakharov in Ref.

34.

The Zakharov equations, or the nonlinear Schroedinger equation, provide

a self-consistent model for these parametric instabilities. Besides describing

the modulational and the decay instabilities, the nonlinear development of

these equations can lead to the phenomenon of Langmuir wave collapse, or

condensate instability. This can occur for K >> kzo, and is similar in

respects to the modulational instability. The region corresponding to the

different types of monochromatic wave instabilities is shown in Figure 10,

36



wo/nr M! /me jkr1IMII I - l-

l(kr,)

Figure 10. Location of different instability types for monochromatic
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lational instability; (II) modified decay instability;
(1II) uniform field instability; (IV) decay instability +
modulational instability (at Ti << T ), induced scattering
+ modulational Instability (at Ti -T). (From Ref. 34)
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taken from Zakharov's review In Ref. 34. Other reviews and papers rela.ing

particularly to the role of strong turbulence In the stabilization of the

electron beam-plasma Cerenkov instability are given in Refs. 35-39.

In the paper by Papadopoulos, Ref. 36, there is a graph of the regions

in parameter space in which either nonlinear or quasilinear stabilization

occurs for a non-relativistic, collisionless plasma: this is given in Figure

11. We note that even though Schumacher and Santoru's experiments may fall in

the regime of nonlinear stabilization, collisions may be important; the

implications of this will be discussed in the application section. The

stabilization of the electron beam-plasma interaction by strongly turbulent

processes was studied analytically and numerically for a wide range of

collisionless plasma parameters in the paper by Freund et al. in Ref. 35. This

paper confirms some scaling laws between beam-plasma instability growth rates

and electrostatic field fluctuations given in an earlier paper by Papadopoulos

et al. in Ref. 37.

Because collisions between electrons and neutrals and ion charge

exchange collisions are both significant for the parameter regimes of

Schumacher's experiment, the most relevant references on these nonlinear

parametric instabilities are those that include the effects of electron and ion

collisions. There has been recent work on the modulational instability, the

decay instability, and solitons within the context of a theoretical description

of ionospheric heating experiments. This is one parameter regime in which

collisions can be important in the sense that the collision frequency can be a

significant fraction of the instability growth rate. A paper by G. L. Payne et

al., Ref. 40, shows that both the OTSI and the POI have lowered growth rates

when the ion damping is large, but the OTSI is less affected (Figure 12 from

Ref. 40). This is presumably because the modulational instability doesn't

oscillate, and has only its growth resisted by damping, while the decay

products of the PDI have both their oscillation and growth resisted by

damping. Electron collisions compete directly with the growth rate of these

instabilities, that is, the electron collision frequency essentially is

subtracted from the instability growth rate to get the effective growth of

these instabilities. As such, the growth of the modulational instability, for

example, has to be > the electron collision frequency in order for it to be
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able to stabilize the beam. Reference 40 also follows numerically the

nonlinear evolution of the modulational instability, using Zakharov's

equations. After an initial transient stage, the Langmuir waves become intense

enough to collapse into soliton-like structures, with a spatial width related

to the wavelength of the modulational instability. Other related papers on the

role of these kinds of instabilities in ionospheric heating experiments include

Refs. 41 and 42.

There have also been papers on the role of strong turbulence in type III

solar radio bursts. Type III solar radio bursts are thought to be associated

with an intense level of electron beam excited Langmuir waves, which can

scatter off of or couple with other waves to produce observed electromagnetic

radiation at the local plasma frequency and its second harmonic. The

stabilization of these electron beams, which are emitted at the sun's surface

and may propagate to the earth's orbit and beyond, may also occur by the

nonlinear parametric instabilities involving strong Langmuir turbulence. In

D. R. Nicholson et al., Ref. 43, and M. L. Goldstein et al., Ref. 44, the OTSI

and related instabilities were applied to the stabilization of these electron

beams. In this parameter regime, ion collisions, at least, had to be retained

in the analyses.

Some numerical experiments, or computer simulations, have shown that

strong turbulence processes, in the appropriate parameter regimes, stabilize

the beam-plasma instability before quasilinear plateau formation. These

include Refs. 45 and 31. Collisions were not included in the simulations, and

these are probably quite important in analyzing Schumacher and Santoru's mm

wave experiment. (We understand that it is quite difficult to include

collisions in a simulation, Ref. 33).

b. Weak Turbulence Processes

If the energy density of the beam excited Langmuir waves is such that

Wp/neTe < (kzo De)2 , or if strongly turbulent processes are quenched due to

collisions, for example, then various nonlinear processes within weak

turbulence theory can contribute to beam stabilization. One such process is

the merging of two electrostatic Wpe waves into a transverse wave with

frequency w = pe" However, the reciprocal value of the typical time of this

process,
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1 W VTe 2

T pe (ne e ) (VT) (20)

is generally quite small, unless the plasma is very hot, with VTe near c.

Another nonlinear process is the merging of one Langmuir wave and one

transverse wave into a transverse wave. The inverse of the typical time of

this process is

1 W T (VTe 2
W -p ( e ) (21)

T peYT n7 -)e e

where WT is the energy density of initial transverse waves. This inverse time

scale could be large if there was an intense bath of transverse waves

present. Other processes include the Thompson or Compton scattering of

Langmuir waves on electrons and ions. All of these weak turbulent processes

are discussed and referenced in the review by Sudan in Ref. 3.

4.3.1.4 Quasllinear Stabilization

The quasilinear approximation is suitable for bump-in-tail distributions

but its validity for highly energetic vb > vTe, cold &vb/vb " 1, beam-plasma

interactions is limited. (Here vb is the beam directed speed, vTe is the

electron background thermal speed, and Avb is the electron beam thermal

speed.) Aronov (a), Ref. 9, nevertheless, considered the quasilinear

relaxation of a beam in a plasma-filled waveguide. The spectrum of unstable

modes is anisotropic, with a very broad spectrum in k1. Quasilinear relaxation

of the hydrodynamic beam-plasma instability would be possible if either

6 < kz(AV bl) or 8 < k1 (AVb.) (22)

for the lowest order radial mode with kimin 0 2.4/r . (Here 6 is the growth

rate, AVb and AV b are the axial and perpendicular beam electron thermal

spreads, and rg is the waveguide radius.) For non-relativistic beams, under

the dense plasma condition we >> (2.4 vb/rg) 2 9 Aronov (a) found the beam
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relaxation to be nearly one-dimensional, along the beam direction (axial),

and accompanied by preferential increase of longitudinal beam

heating (T >> T b). The level of Langmuir turbulence was found to be of the

order of 1/2 (nb/2ne)113 , which is essentially the same as the beam trapping

result.

An interesting, albeit very early paper, by Fainberg et al., Ref. 47,

shows that when an electron beam is continuously injected into a bounded

plasma, the total energy density of the excited waves can be greater than the

single shot case. This is because the excitation of waves takes place

continuously as new fast beam electrons are injected into the plasma. If the

energy transport velocity of the waves, viz., the group velocity, Vg is much

less than the velocity of the beam electrons, vb, then the excited waves

accumulate near the beam front. The energy density in the plasma waves can be

greater than the beam energy density by a factor (vb/vg).

4.3.2 Application to mm Wave Experiment

4.3.2.1 Beam Trapping and Quasilinear Stabilization

The Cerenkov beam-plasma instability in Schumacher's experiment appears

to be in the hydrodynamic regime, because the beam thermal spread %vb/vb is

less than (nb/ne)11 3 . As such, the Cerenkov instability is strong, with growth

rate - (nb/ne) 1/3wpe, and one would expect a high level of unstable waves. The

spectrum is probably broad in k1 , as discussed in the section on beam-plasma

instability, while the spectrum in kz is narrow, of the order of - (nb/ne)1/3

N-1/2kz after N foldings. One might expect beam trapping in the longitudinalzo'

direction, because the spectrum is quite narrow in kz, and quasilinear

relaxation in the transverse direction, because the spectrum is broad

in kI. However, even though the spectrum is broad in k1 , it is quantized

according to the condition Jm(k imn r g) - 0. If only a few modes are excited

(higher order modes being damped by beam thermal effects), the situation is

more like beam trapping.

What are the relative magnitudes of the axial electric field Ez and the

perpendicular, or radial, electric field Er for the beam excited axisymmetric

modes? The axial field is related to the perpendicular field by
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Ez - (kz/k)Ere For the lowest order mode, k1 a 2.4/r 9 - 1.26 cm"1 , and thus

Ez - 7Er for the standard case. However, for a higher order mode, such as the

axisymmetric mode with 3 radial nodes, k1 - 4.5 cm "1 , and Ez - 2Er.  Thus it

appears that the perpendicular electric field could play a significant role in

the wave-particle interactions for higher order modes, at least.

However, let's assume that the beam does trap in the longitudinal

direction and see what follows from this. The beam would trap in the potential

of the unstable wpe waves on a short time scale, of the order of a few growth

times. The saturation energy density of the unstable waves is of the order of

Wp/nbEb ~ 1/2(nb/2ne)1 /3. If we assume that the initial level of waves is the

thermal level, Wp/neTe 1/2 :ne)e, where ADe is the electron Debye length,

then it would take a time

t - ma- In -(n-) I13 2fneX~e (23)

to reach the saturation level, assuming the energy grows as exp(6maxt), and

that neTe - nbEb. Using the standard case parameters, this is of the order of
6-7 growth times, with the growth time 6-1 - (0.07 ope ) -1 , which is about 1.2-
1.4 ns. The saturation level for the standard case is of the order of
(Wp/nbEb) - 0.03. (During this time, a beam of directed energy E ~ 30 keV

would have travelled about 12-14 cm, or almost the entire length of the drift
tube.)

Since the perpendicular energy distribution of the beam is like a bump-
on-tail, that is, Tb > TeL, we might speculate that the beam undergoes
quasilinear relaxation In the perpendicular direction, while being trapped by

the potential associated with Ez in the longitudinal direction. In Aronov (a),
Ref. 9, a quasilinear analysis was done for beam saturation in a plasma-filled

waveguide. Using their expressions, with standard case parameters: the
saturation energy of the axisymmetric, lowest order mode is (Wp/nbEb) * 1/2

(nb/2neP/ 3, same as the beam trapping value; the longitudinal beam temperature
is increased preferentially over the perpendicular temperature, with 1zaX -

(nb/2n) 2/3 M V2 - 270 eV, and Tiax _ (k2/2k2) Tmax - 2.6 eV. We note that
b e) eb b7 T x  z bz

this small value for T. is consistent with a low perpendicular thermal beam
pressure needed for the Bennett pinch.
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4.3.2.2 Nonlinear Stabilization

a. Strongly Turbulent Processes

Using the value estimated above for the energy density of the unstable

Wpe waves, we can estimate whether this is large enough to be in the strongly

turbulent regime. The quantity (kzoADe) 2 is of the order of (Te/Eb) for the

Cerenkov unstable waves. For the standard case, this quantity is of the order

of 2 x io"4. Then the conditions for strong turbulence to be present, Wp/neTe

> (kzoife) 2 , is satisfied.

However, electron-neutral, el ictron-ion, and ion charge exchange

collisions can be significant in this experiment, and can affect the

development of strongly turbulent stabilization processes. In the application

section on beam focusing we estimated the electron-neutral collision frequency

to be of the order of Ven - 108 s"I for the standard case, and the electron-ion

collision frequency was estimated to be of the order of Vei - 107 s-1. The

ions also suffer charge exchange collisions, with the resonant charge exchange

cross section for He+ in He given by the graph in Figure 13 taken from Ref. 8:

for the standard case, vin - 106 s"1 .

How will the electron and ion collisions affect the growth rate of the

modulational and related instabilities in this case? Following Papadopoulos,

Ref. 37, and Sudan, Ref. 3, we write the Zakharov equations in the approximate

but more physically transparent form in terms of the energy density of waves in

the primary wpe spectrum, Wp, in the secondary spectrum We, and in the ion

fluctuations W of the secondary spectrum:

ld "6 -6 (W ) We
I i p p s p s

e (6 r e) ef" TT" Ws s s

1 d (6 -r) W 1 (24)

45



I 1 I

40

in helix, and no ronantchretasr r

30
(A.A)

20

0 10 20 30 40 so

rononseown.nt

10

(H.A)

46p

0 ' 20 30 40 so
I" sesw. wn%1

Figure 13. Charge transfer (charge exchanpe) cross sections.
Resonant charge transfer for A in argon and He+
in hellium, and nonresonant charge transfer for
H+ in xenon and H4' in argon (after Hasted, 1951;
and Massey and Burhop, 1952, p. 529).
(From Ref. 8)

46



Here 6p is the mean linear growth rate of the primary waves, 6s(W p) is the rate

at which the secondary spectrum is generated by nonlinear interaction, and re

and ri are the mean damping rates of the secondary waves and the ion

fluctuations, respectively. (We neglect electron Landau damping because the
primary unstable wavenumber kz ~((pe/Vb) would have to increase to kz 1 in

order for this to be important; and we neglect ion Landau damping because Te >>

Ti in this experiment.) For the modulational instability in the regime

(Wp/neTe) > (kzxDe)2 > me/mi, the maximum growth rate is given by Eq. (19) as

= 'max W 1/2
6s  vMOD (p) p

where wpi is the ion plasma frequency. In order for the modulational
instability to go, 6MOD has to be greater than the damping rate re. For re

s 5
en 108 s-1 for the standard case, then 6MOD > re would imply that (Wp/neTe)

has to be > 0.04. Using standard case parameters, (W/neTe) - 0.09 from beam
6mx -1.5

trapping, so that the modulational instability could go with 6 ~ _ en"
MOD n

In actuality, 6 MOD should be a few times larger than the damping rates in order

for the nonlinear evolution to proceed. It seems possible that electron

collisions could prevent the growth of the modulational instability in this

experiment in some regimes, or at least, reduce its growth. We note that as ne

decreases, it is harder to satisfy 6MOD > v en" We note also that the growth of

the modulational instability scales as m,1/2. If the standard case parameters

were held constant, but the ion mass increased by switching to Xe gas, for

example, then SP - 0.08 ven and the modulational instability would be

quenched. Because the ion collision frequency is so low in the standard case,

"in - 106 S -1, compared to ven - 108 s -1, ion collisions may not be important

in determining the effective growth rate of the instability, rather only its

character, i.e., OTSI versus PI.

It appears in this experiment that, at least in the present parameter

regimes, (1) the modulational instability may not develop, or may develop only

with a reduced growth rate, and (2) the waves which interact to produce the

2pe radiation are those from the primary beam-unstable spectrum, and not from

a secondary spectrum which would result from the nonlinear development of a
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modulational instability. In support of (1), we note that the growth rate for

the modulational instability (probably the POI has a lower growth rate because

ion-acoustic oscillations are damped, that is, Vin - kzCs, for kz - wpe/Vb) is

of the order of 606 Wp (Wp/3neTe)1/2. Now (.pi/ven) - 9 for the standard

case. But as the ion mass increases, with pressure held constant, wpi

decreases while Ven increases. For example, for a background argon gas, with

standard case parameters, ven - 3.6 x 108, while wpi - 3 x 108. In this case,

(W/neTe) would have to be 1 1 in order for the modulatlonal instability to

go. This is a very large value, of course, but it might be possible if (nb/ne)

increases substantially due to beam focusing. In support of (2), the

experimental data indicates that the beam energies of the two beams have to be

very close, at least at the lower energies and currents, in order to get

maximum radiation output at 2&pe. Since w - kzvb, then kz - wpe/Vb for the

maximally growing modes. For vb < c, kp > kT, where kp and kT are the

electrostatic and electromagnetic wavenumbers, respectively: so in order to

satisfy momentum conservation for the three-wave process (see section on

radiation mechanisms), kp2- kpl" This is precisely the relation between the

wavenumbers of the beam excited modes when the beams have near equal, but

oppositely directed, energies. As the energies of the beams increase, so that

vb - C, then it's not necessary to have matching because the phase velocities

of the beam excited modes are near c. If the radiation at 2wpe were produced

by the coalescence of waves of the secondary spectrum which developed

nonlinearly in the strongly turbulent regime, then one would expect that the

dependence on the beam energies would be washed out. This is because the ks of

the secondary spectrum would depend on the nonlinear development of the

modulational or related instabilities, and not on the beam energies. Another

point is that radiation at 2 wpe is modulated on the time scale of the ion

plasma frequency. This time scale is of the order of the growth time of the

modulational instability for (Wp/neTe) 1 1. If the modulation of the radiation

is due to a beam relaxation process, then there wouldn't be enough time for the

modulational instability to develop nonlinearly. One more point to support (2)

indirectly is that it appears that we can get ball park agreement with the

radiation power using weak turbulence estimates, with (Wp/neTe) given by beam

trapping saturation values. This will be shown in the section on radiation

mechanisms.
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We note that it may not be good to have modulational instabilities.

Since the modulational and related instabilities can stabilize the beam at
lower wave saturation levels than is required by beam trapping or quasilinear

theory, it may be better to stay out of this regime. Tuning of the radiation

would appear to be better accomplished if the beams were stabilized by

trapping. Then monochromatic waves with narrow wavebands would interact. A

trade off exists however; if the modulational instability develops into

solitons or cavitons, the energy density of the secondary waves could be quite
large because the volume in which the waves are trapped is small, of the order

of a few ADe for each soliton.

One possible way to determine if soliton turbulence exists might be to

see if the electron beam is scattered by the turbulence, Ref. 3. If the
Langmuir wave energy Wp/neTe collapses into N blobs or cavitons per unit

volume, of typical size a few Debye lengths, then a beam of electrons can be

strongly scattered by these blobs. If successive interactions with the blobs

are random in character, then the typical time T D for diffusing through a

radian for the beam electrons scales as

tD pe (W T 3/2

Yb ee b

For Schumacher's experiment, this time scale is much longer than the time it

would take a beam electron to traverse the length of the device with it's

original energy. For the standard case with (Wp/neTe) - 1, this time scale is

- 5 us, while the time for- a beam electron with 30 keV to transit the length of
the device is of the order of 2 ns. This is probably not a viable test for

this short device.

b. Weak Turbulence Processes

What about the role of weak turbulence nonlinear processes in beam

stabilization? The three-wave interaction in which two longitudinal (pe waves

coalesce into a transverse wave at 2pe occurs on a time scale 1/T - Wpe

(Wp/neTe)(vte/c)2 . Since (vte/c)2 - 2 x 10-5 for this experiment, this time

scale is much too long (of the order of 1/2 ls for standard case parameters
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with (W/neTe) 1) for this process to be important on the time scale of the

modulation of the radiation. However, suppose the unstable waves really do

pile up near the beam head with an energy density (vb/vg), Ref. 47, larger than

the quasilinear saturation estimate. For an infinite plasma, vg ~ Vie/Vb, SO

that the time scale, using the same parameters, becomes of the order of 10- 5

ns, which is too fast (being << the growth time of the Cerenkov beam-plasma

instability), so there's a problem with this interpretation now.

4.3.2.3 Time Scale of Modulation of the Radiation
A comment about the time scale of the modulation of the 2wpe radiation,

and how this could be related to processes of beam stabilization. The observed

time scale is of the order of the ion plasma frequency, which for a helium

plasma is of the order of 0.01 wpe" Now this time scale can actually

correspond to a list of different processes: (1) w is of the order of the

time scale for beam trapping; that is, the growth of the Cerenkov beam-plasma

instability is 6 < 0.1 w pet and the time scale for beam trapping is a few, 6-7

growth times; (2) the time scale for the growth of the filamentation

instabilities is also of the order of wpi; that is, the ratio of the Weibel to

the Cerenkov instability is of the order of 0.1 for typical parameters; (3) the

time for the growth of the modulational instability is of the order of W-, for

(W/neTe) - 1; (4) the time scale for the beam to traverse the entire length of

the device, moving with its original energy, is of the order of 2 ns for a 30

keV beam; this time scale is - wpj; (5) of course, the ion plasma oscillations

occur on this time scale.

4.3.2.4 Work to be done

We make some comments about some of the work needed to sort out the beam

stabilization aspect of the experiment. (1) A lot of the discussion on beam

stabilization assumes that the Cerenkov instabilities of the two beams don't

interact. If this is not the case, then we may have to consider other types of

instabilities, and thus other types of beam stabilization processes. (2) What

about beam trapping? Is it possible that each beam is acted on by the total

field excited by the two beams? If so, how does this affect the mechanism of

energy exchange between the beam electrons and the wave, and ultimately the
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beam trapping mechanism? How does the nature of convective versus absolute

instability affect the stabilization? In addition, what about the anisotropy

of the unstable spectrum as regards beam trapping? Since the perpendicular

energy distribution of the beam is like a bump-on-tail, that is, Tbi > TeL,

where Tb, Te, are the beam and electron background temperatures, it's possible

that the beam could undergo quasilinear relaxation in the perpendicular

direction, while being trapped by the potential associated with Ez in the

longitudinal direction. Also, does a pile-up of unstable waves occur at the

beam head, as shown in Ref. 47 for a steady state situation? (3) We will have

to do more work to determine if and how nonlinear parametric processes

associated with strong turbulence play a role in beam stabilization. We should

map out the regions where the modulational instability may be quenched or

reduced in strength by collisions in this experiment. In order to do this, we

need to solve the Zakharov equations including electron and ion collisions. We

should also include losses of waves due to the three-wave interaction. (4) We

haven't even discussed the stabilization and nonlinear development of the

electromagnetic filamentation instability. Even though this instability grows

slower than the Cerenkov instability at wpe' do the two beams interact to alter

the growth rate? It may be possible that this aperiodic instability, in which

the plasma is configured into filaments, could play some role in enhancing the

?6pe radiation because of the associated increase in density gradients in the
plasma. Some work on the nonlinear development of filamentation instabilities

was done in Refs. 48 and 49.
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4.4 RADIATION MECHANISMS

4.4.1 Summary of Literature

4.4.1.1 Introduction

We will discuss processes which lead to radiation at 2wpe, and also

processes which can produce radiation at ipe" Within each section, we'll

discuss radiation processes at first within the context of weak turbulence

theory, in which well defined plasma waves interact with each other or with

particles, but retain their linear mode character. Because it is possible that

the beam in Schumacher and Santoru's experiment could be stabilized by the

modulational and related instabilities in certain parameter regimes, we'll then

consider radiation mechanisms associated with such strongly turbulent effects

as Langmuir collapse.

Within weak turbulence theory, the allowed radiation processes which

lead to radiation at the second harmonic are: (1) the merging of two

longitudinal wpe waves to a transverse wave with frequency 2wpe, and (2) the

merging of one longitudinal and one transverse wave, each with frequency w -

wpe, into a transverse wave at 2wpe" Some processes which can lead to

radiation at wpe are: (1) direct conversion of beam unstable modes into

electromagnetic radiation, since these modes have a finite EM component in the

waveguide, (2) scattering of longitudinal into transverse waves on density

gradients, and (3) scattering of longitudinal into transverse waves by

electrons and/or ions.

Within the context of strong turbulence theories, radiation at 2wpe can

occur by the merging of antiparallel propagating Langmuir waves trapped in

solitons or cavitons. In addition, weak turbulence processes may be enhanced.

Essentially all of the references found deal with infinite plasmas.

Probably most of the general formulae presented for the infinite plasma are

applicable, and quantization effects arising from the waveguide can be

incorporated into these general analyses.
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4.4.1.2 Emission Mechanisms for Zwpe Radiation

a. Weak Turbulence Theory

Various review papers and books discuss the emission probabilities for

the 3-wave interaction processes which yield radiation at 2Wpe, in the weak

turbulence approximation. For example, there is Ref. 50 by V. N. Tsytovich,

which has intuitive and classical derivations of the 3-wave process, and there

is also the book, Ref. 51, and the review article, Ref. 52, by D. Melrose.

In the 3-wave interaction process, both energy and momentum have to be

conserved. This is contained in the conservation laws

w3 w1 + w2

k k + k • (27)

It follows that when 1 and 2 refer to longitudinal wpe waves, 3 can refer to a

transverse wave with frequency 2wpe* If one of the longitudinal waves is a

slow wave, with k1 " wpe/c, so that its phase velocity vph << c, then momentum

conservation implies that k2 - -k1  The emission coefficient of a transverse

wave with frequency &pe is determined by the product of the energy densities

of the longitudinal plasma waves, i.e., (Wkl)(Wk2), with the values ki and k2

satisfying the conservation laws.

The following is a sImple approximate derivation of the three-wave

emission probability, following Tsytovich, Ref. 50. The emission power is

defined as the amount of energy emitted by a particle per unit time per unit

wavenumber;

Pk ' k 2 k u k (28)

where the emission probability uk = e2v2/2 where v is the characteristic

velocity of the radiating particle and wk is the radiation frequency at
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wavenumber k. For three waves, the interaction leads to quadropole

radiation. The motion of a free electron in the electric field of two waves of

wavevector k1 and k2 and frequency w, and w2 is described by

d2r

me - - 1E[cos(wit - k r)]+ 2Ecos( 2 t - k2  r)] (29)
dt

We linearize the equation of motion, and focus on those terms proportional to

EjE 2 , which are the ones that produce electron motion which has the sum and
difference frequencies w1 + w2 , wl - w2 - What happens is that the electron is

accelerated and decelerated and emits waves at these sum and difference
frequencies. The order of magnitude of the electron velocity v dr/dt which

is proportional to EjE 2 and symmetric and wi,w 2 and kl,k 2 is

e2  k1  k2  E E2

The emission probability is

e6  k1  k 2 2 E2 E2 n
u Z e ( +2 1E2  k (31)

me 1 W2  w 1 we 3  312

where the factor in the { ) takes into account that all the electrons in a
volume of the order of the symmetrized wavelength radiate coherently.

A more exact value for the total emission power density, ir( 2 wpe), for

this process, which we'll refer to as t + x. + t(2wpe), is (Ref. 50)

2 kDe(Zmpe De W 2 (.!- )
pe n fck dk 1  . (32)

/ pe/c

Here the waves are assumed to be slow, with k1 ,k 2 > wpe/c, and Wkl is the
energy density of the longitudinal waves per unit kj. Note that the largest

emission power is generated when k1 - k2 - VI Wpe/c; then the result reduces to

the approximate result found in Sudan, Ref. 3.
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We specialize to the case of waves generated by the hydrodynamic beam-

plasma instability, in which 1kl1 = k2 I = Wpe/Vb .  Assuming a 1-0 spectrum

with Wp flat over akz ~ (k zob(nb e)  where N = number of e-foldings of

primary wave, then the total power density is

W n b2/ v3 b 5

pe n)b2Eb n bEb (F) (33)

For the process in which a Langmuir wave and a transverse wave merge
into a transverse wave near 2wpe, the longitudinal wave must have a phase

velocity near c to satisfy energy and momentum conservation. The power density

is given approximately by

W
w (2pe) pe W Tn 2 (34)

where WT is the energy density in the transverse waves, Ref. 3. We note from

here that if the conservation laws for this process are satisfied, it might be

possible to increase the power output in Schumacher and Santoru's experiment by

launching a guide mode which would take the place of one of the beams.

Prasad, Ref. 57, calculates a mechanism for enhanced emission at 2pe

involving the scattering of an electrostatic plasma wave on an electron density

fluctuation, when the electrostatic wave is coherent. The power output is

proportional to Wp, as in weak turbulence theory, but there is a threshhold for

the process, which can occur when the energy density of the electrostatic pump

waves is

(_ ) T1  m e ) 2wpe(3

n )>So (T-i) "e (5
e e e i vph e

where Vph is the phase velocity of the Langmuir wave, and Ve is the electron

collision frequency.
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b. Strong Turbulence Theory

Various papers purport to describe conditions under which radiation at
2wpe is enhanced in the strongly turbulent regime. Kamilov et. al. in Ref. 53

show that it is possible that emission can be enhanced in the presence of

strong Langmuir turbulence, when certain threshhold conditions are satisfied.

Formally, one multiplies the emission probability for the process I + I +

t(Zape) by an enhancement factor which is of the order of (neTe/Wp )1/2, for

(Wp/neTe) < 1. This enhancement appears to be due to stimulated emission, but

the instability can only occur if the level of the transverse waves exceeds a

certain threshhold value which is WT - (vTe/C)2Wp, where Wp is the energy

density of the Langmuir condensate.
Other possibilities for enhanced emission at ,wpe in the presence of

soliton collapse are described with application to solar type III radio burst

parameters in Refs. 54 and 55. More recent work on soliton collapse and

emission of 2wpe radiation with application to these solar parameters is found

in Ref. 56. The latter reference considers the emission of radiation at wpe

and 2wpe from beam excited strong Langmuir turbulence, for the case of low

density, high velocity warm beams, in parameter regimes applicable to solar

radio bursts. The quadropole emission at w - 2wpe arises from collapsing

Langmuir wave packets, which contain antiparallel propagating Langmuir waves.

The parameter space for Langmuir collapse and subsequent radiation is very

rich, and many quite different phenomena occur under different conditions. The

latter paper considers only one simple case, with parameters quite different

from the mm wave experiment. But it is probably the most complete analysis

done so far, and indicates the complexities involved in an analysis of

radiation from Langmuir collapse.

4.4.1.3 Emission Mechanisms for wpe Radiation

a. Introduction

We summarize some work done on radiation on the fundamental plasma

frequency for two main reasons. First, since the eigenmodes in the beam-plasma

system in Schumacher's experiment are not purely electrostatic, there may be

some emission due to the finite EM component of the wave. Secondly, it's
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possible to convert a purely longitudinal wave to a transverse wave by

scattering on a density gradient, and this may indirectly yield some estimate

of the magnitude of such gradients in the experiment. The following discussion

is within the context of weak turbulence theory.

b. Direct Conversion

Aronov (a), Ref. 9, discusses the direct conversion into electromagnetic

radiation of a beam unstable mode in a waveguide. The small departure from

purely electrostatic behavior of the maximally growing unstable wave is due to

its magnetic field, which produces a non-vanishing Poynting flux. The Poynting

flux is in the axial direction,

r 2ir

c rdr .f (E x B) (36)

0 0

In Aronov (c), Ref. 11, it is shown that this flux can be associated with

efficiencies of the order of 30%, for certain waves within certain waveguide
and beam parameter ranges. It's not clear whether this has been achieved

experimentally, however.

c. Scattering on Density Gradients

G. Benford et al, in Ref. 58, summarize the approach of Tidman et. al.,

in Ref. 59, to consider the emission of radiation at wpe near density

gradients. An electrostatic wave passes through a density fluctuation of

dimensionless magnitude A and spherically symmetric dimension y

p n (r) (VA/y ) exp(-x /y (37)

where _p describes a fluctuation over a volume V, with radial variable x. A

perturbation analysis in the small variable VA/y 3 << 1 yields the total EM
power emitted from a number N of such exponential fluctuations, in a plasma of

temperature Te:
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a2, 2 2 4
itVv W V2~p ,2.

P T . exp(pe ) (38)

128,rc 4  e 2

where k - wpe/Vb, and 8 vb/c. The exponent in Eq. (38) implies that the

radiation is most efficient for wavelengths larger than y, i.e., sharp

gradients are most effective.

d. Scattering by Electrons or Ions

Another process that can lead to radiation at the plasma frequency is

the Thompson scattering of an wpe wave by an electron and its polarization

cloud, or by an ion and its associated polarization cloud of electrons. In

most cases, the scattering of Langmuir waves by an electron and its "coat" is

much weaker than the scattering by the "coat" of an ion, Ref. 50. This would

be the case for the parameters of Schumacher's experiment. In the scattering

process, the conservation laws for the total energy and momentum of the wave

and particle has to be satisfied. These conditions lead to

W -WO - (t - t') - VTi , (39)

where the primes refer to the incident wave, and vTi is the ion thermal

velocity. If the direction of the wavevector changes appreciably during the

scattering, then lk - k'I is comparable to the absolute magnitude k and

w kv VTi (40)
Vph

where vph is the phase velocity of the Langmuir wave; thus, the change in

frequency is very small. This process can lead to absorption or amplification

depending basically on the sign of

kf-'k - 'k, _

For a Maxwellian ion distribution, this is
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- [w(k) (k')]

If i, a scttering process the frequency is increased, (W > W'), absorption

occurs, while if the frequency decreases, (w < w'), induced wave emission

occurs and amplification is possible.

4.4.2 Application to mm Wave Experiment

4.4.2.1 Emission Mechanisms for 2wpe Radiation

a. Weak Turbulence Theory

Before looking toward more exotic theories involving strong turbulence

effects to explain the radiation at 2wpe, we first consider how well weak

turbulence theory explains the emission. Indeed, we've indicated in the

application section on beam stabilization that it is possible that in certain

parameter regimes electron collisions could slow down or even prevent the

modulational instability, and other related strongly turbulent stabilization

processes, from developing. Even if the modulational instability does develop

at a reduced growth rate, weak turbulence radiation processes may damp the wave

energy.

In addition, it is observed experimentally that voltage tuning, in the

form of Ebl - Eb2, is required for maximum 2wpe power output, at least at the

lower beam energies. This would reflect momentum conservation for the three-

wave interaction. It follows from Eq. (27) that when wi, w2, are longitudinal

beam slow waves, with phase velocity vph ~ vb < c, and w3 is a transverse em

mode with vph - c, then Ikjzj --1k2z1. This implies 1vbj1 - lvb 2I, or voltage

tuning. In this case, k3z is very small, i.e., near cutoff.

Assume that there is a high level of unstable longitudinal monochromatic

waves of frequency wpe' which is given by the beam trapping result as (Eq. 17)

~ 1nb/3 Eb

e b

We use the weak turbulence expression given for example in Ref. 50, for the

power density of 23pe radiation due to the 3-wave interaction I + t + t(2wpe),

(Eq. 33)
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W 2 nb 2/3  Vb 5
pe,~ 441pe (.b (.-)e 3 b b

Inserting the above saturation level for Wp, we find

nb 4/3  vb 5
W(aOpe) ~ .6 -N wpe (n- e bEb c (41)

e

The power radiated P(Zwpe) is obtained from Eq. (41) by multiplying by the

interaction volume, which we estimate to be the cross-sectional area of the

beam, Ab, times the length of the device, L.

First off, we note that the power P(2pe) scales as

P( p ) n 7/3 E 3 5 Ab (42)
pe ~b b b

Neglecting beam focusing effects, which we will consider below, this leads to a

nonlinear dependence on the initial beam current Ib - nb. This says that the

power should scale as 17/3. It appears from Schumacher and Santoru's

experimental data that the scaling is much steeper with 1
b, possibly reflecting

the nonlinear dependence of nb on Ib.  For fixed nb, the power should scale as

E3.5. This might be difficult to observe experimentally unless there is someb
way of determining how the effective nb in the interaction region depends on

other parameters such as Ib and even Eb itself.

The observed scaling of power with Ib may be understood within the

context of weak turbulence theory if the scaling of nb with beam current 1b,
were sufficiently nonlinear. Because the beam focuses, we write the effective

beam density as

nb = n bo (Abo/'b)

where nbo is the initial injected beam density, Abo is the cross-sectional area

of the beam at the entrance to the guide, and b = r is the compressed cross-
b rb i h opesdcos
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sectional area, with rb the compressed beam radius. We assume that each beam

magnetically self focuses, which appears to be plausible from the section on

beam focusing, and make the ansatz that B2  I from pressure
o-20 b/b nbTb±

balance for each beam. If rbT is independent of Ib, then nba I2.
follows then that the power would scale as

P(2pe) a I14/3

which may be in closer agreement with experiment. In fact, the power scales

like 15- 7 experimentally for a He plasma. Below some threshhold Ib, however,

the power decreases exponentially.

We make some quantitative estimates of the power emitted in 2pe

radiation for the standard case using weak turbulence theory. Plugging the

standard case parameters into Eq. (41), and assuming N - 7 from the section on

beam trapping, yields

W (a,) - 2 x 106 erg/cm 3-s

Multiplying by the volume wr2 L - 1.8 x 103 cm3 , we get for the total power

P(2wpe) - 36 Watts. We compare this result to the run shown in Figure 14 (Ref.

7). The parameters of this run are somewhat close to the standard case. The

power observed was of the order of 10's of Watts, although this figure may have

been revised upward recently due to better calibration of losses in the

waveguides, Ref. 60. If we use the experimentally determined value of nb - 6 x

109 cm"3 for the highest beam current cases, with the other parameters given by

the standard case, then P(2wpe) - 1 kW, which is the same order of magnitude as

the experimental value of P(2wpe) < 8 kW.

The efficiency n is defined as

P(a pe)(43)

P(2 beams) '
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35-GHz
RADIATION

TIME, 40 ni/div

no -3.8 x1012 CM-

To -5ev

Ib a2.5 A

Vb - 30 kV

nb 2i2.3 x10-4

n.T

(k X) 2 a 8 X10-5

Figure 14. Output rn-wave radiation is strongly modulated on a time
scale which is near the ion-plasma frequency. Experiment
parameters corresponding to the observed 35-GHz radiation
are listed below the oscilloscope waveform. (From Ref. 7)
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where the power in the two beams is

P(2 beams) - 2nbEbVbAb (44)

assuming the beams have the same parameters. For the previous example of the

standard case, with P(Zape) - 36 W, and P(2 beams) _ 105 W, the efficiency is
3.6 x 10-4 . The scaling of the efficiency of the mm wave output with the

parameters Ib and Eb, taking beam pinching into account, is

1 11/3 E 2

Thus increasing Ib by a factor of 4, say, would increase the efficiency by a

factor of - 160 for the same input parameters. If the beam is focused owing to

its own magnetic field, then there is no additional energy spent in the

compression. Even if the beam is focused due to other geometrical effects

inherent in the injection process, it would be a good idea to arrange

parameters such that the beam does self focus (bearing in mind that there might

be limitations to how high the current should be, e.g., to avoid return

currents).

Are there any other ways the emission process could proceed within the

weak turbulence context, but yet be enhanced above the values calculated

above? It was shown in Ref. 47 that there can be an accumulation of energy in

unstable plasma waves within quasilinear beam stabilization theory, when the

experimental situation corresponds to steady-state, versus one-shot injection.

There it was shown that (Wp/neTe) could be enhanced by a factor (vb/vg) times

the usual quasilinear asymptotic level. For a Langmuir wave in an infinite

plasma, vg - ve/vb, so that this enhancement factor is - (Eb/Te). This is

quite a large number in the nin wave experiment, of the order of 3/5 x 10

which could in principle lead to an enhancement of the order of 4 x 107 in

power.

Prasad's theory, Ref. 57, appears to be similar to the weak turbulent

three-wave interaction, with the specification that one of the longitudinal
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waves is coherent, (i.e., produced by a strong beam-plasma Instability), and

the other wave, or electron density fluctuation, is thermal level. At this

point we don't understand how this theory leads to enhancement of radiation

over the simple weak turbulence estimate discussed above, and we'll have to

contact the author to discuss this more fully.

b. Strong Turbulence Theory

The discussion in the last section shows that weak turbulence estimates

lead to reasonable agreement with the magnitude of the observed power of 2wpe

radiation in Schumacher and Santoru's experiment. The scaling of the power

with beam current may also be understood within weak turbulence theory, if the

effects of magnetic self focusing are included. It appears somewhat doubtful

that radiation from collapsing solitons or cavitons could play a role in the

experiment. First off, the radiation is present only when there are two

counterstreaming beams; if soliton collapse were important, one would expect to

see radiation with only one beam present. Secondly, the growth of the

modulatlonal and related instabilities appears to be reduced by electron

collisions, as shown in the application section on beam stabilization. There

it was also pointed out that the 2wpe radiation itself may play a part in the

damping of these instabilities. We note, however, that it may not be

beneficial to be in the strongly turbulent regime as regards radiation

processes, because it appears to be more difficult to control the spectrum, the

direction of propagation, and the bandwidth of the radiation, if the radiation

originates from collapsing solitons or cavitons.

4.4.2.2 Emission Mechanisms for wpe Radiation

We estimate now the power that would be emitted at the fundamental

plasma frequency. First we'll consider direct conversion, and then scattering

on density gradients.

a. Direct Conversion

Direct conversion into electromagnetic radiation is possible because of

the finite magnetic field of the beam excited wave In the waveguide. With the

field components Ez , Er, and B., the Poynting flux can either be in the axial
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direction or in the radial direction. The former flux would be largest for the

higher order beam excited modes, that is, for those axisymmetric modes with

lots of radial nodes, because of the relation Er - (k J/k z )Ez, - Er* We

estimate the Poynting flux in the axial direction arising by direct conversion

from a beam-plasma instability. Assume the experiment were modified so that

there was only one beam, with an output guide at the opposite end of the

waveguide. Assume the length of the guide was such that the maximum build up

of unstable axisymmetric waves occurred near the output end of the guide. The

Poynting flux Is given by (Ref. 9)

3P - 6n 2 vb _Ezn12 j2(5
Pz 21" Un Y an ('jn) ,(5

n pe W pe

where 6n is the linear growth rate, and other notation same as in section on

beam-plasma instability. The efficiency is given by (Ref. 9)

2 E2

S2 b (nnE (46)

n pe kzrg

Using the beam trapping result to estimate (E2/4wnbEb), and the growth rate 6 -

(nb/2ne) 1/3 Wpet this becomes

n 2/3 
k

(42

n .b in 2 N (47)

n kz

For the standard case, with rg - 1.9 cm, k- ~ 4.5 cm"1 for the TM0 3 mode: the

efficiency it of the order of 10-4 . If we go to a higher current so that

(nb/ne) - 0.05, and consider the TM0 5 mode, then the efficiency could increase

to n - 1%.

b. Conversion on Density Gradients

We use Eq. (38) to estimate the power that would be emitted near W - wpe

by scattering from density gradients. In Schumacher and Santoru's experiment,
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the limit of detection of mw radiation is of the order of 0.1 mWatt, and no

radiation at this frequency is detected. Thus this should give some upper

limit to the magnitude of density gradients in the device. From Eq. (38), the

power radiated at wpe due to this process is

Na 2 V2 E 2  k_2 2

P(wpe) - (t7) (kVTe ) exp(- (48)

0

with y the scale of the inhomogeneity, a the dimensionless magnitude of the

inhomogenelty, N the number of such inhomogeneities in the volume V, 60 the

collisionless skin depth, and k awpe/Vb* Assuming P < 0.1 *, and using the

beam trapping estimate for (E2/4%), assuming V - w x (1/2)2 x 15 cm3 _ 12 cm3 ,

this implies that i&2 exp(-40.5 y2 (cm)) has to be < 10-8. If N62 _ 10- 3 , then

y would have to be > 0.55 cm - 260 . For a smaller A, of the order of a -

10"10 , as might be characteristic of the background plasma density, we would

expect to see no radiation.

4.4.2.3 Work to be done

There appears to be good agreement between experiment and weak

turbulence estimates of the scaling and magnitude of the radiation power. Even

so, we should try to pin this down even further. Assured that the basic

physics interpretation is correct, we can make optimization studies to find the

best combination of plasma, beam, and geometrical parameters for maximum power

output.

We should do more work on the production of wpe radiation by direct

conversion, since some of the theoretical papers claim high efficiency for this

process. Also, we should investigate the possibilities of increasing the power

output in radiation by using externally launched w > wpe waveguide modes to

interact with the beam excited modes.

We should also investigate the role, if any, of the filamentatlon

instability in enhancing the magnitude of the three-wave interaction owing to

the density inhomogeneities created by this aperiodic instability. We should

investigate the accumulation effect, i.e., the increase of Wp near the beam

head in this steady injection experiment, and its effect on the radiation

process.
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4.5 OTHER EXPERIMENTS

In this section we'll review some beam-plasma experiments which observe

radiation at 2 pe. We pay particular attention to the scaling of power and

efficiency with (1) beam current, (2) beam energy, (3) strength of the beam-

plasma interaction, and (4) energy density of the beam excited waves. In order

to compare these experiments with Schumacher and Santoru's experiment, we will

delineate the parameter regimes: this will also include dimensionless

parameters, such as (rb/rg). ((rg - rb)/So), v/6, (Ib/IBennett), where 6 is any

growth rate of interest, and v is a collision frequency.

Radiation at 2wpe has been observed in several laboratory experiments,

documented in Refs. 61-68, which we'll refer to as A - F below. Experiments

A - C comprise counterstreaming electron beams in a plasma, while D - F

comprise single electron beams propagating through a plasma. We briefly review

the parameter regimes and results of these.

4.5.1 Experiment A

4.5.1.1 Summary of Experimental Results

The experiment of Intrator et. al., Ref. 61, was a steady-state

laboratory experiment, in which counterstreaming, large diameter electron beams

were injected axially into a larger cylindrical plasma-filled target chamber.

The target chamber is 92 cm long by 66 cm in diameter. The radial beam density

profile has a l/e diameter of 14 cm or less In the interaction volume, and the

beam radius appears to get narrower as it propagates in the target chamber.

Typical background plasma parameters are of the order of ne - 1010 cm" 3 , Te ~

1-4 eV, P < 2.5 x 10- 5 Torr for Ar and Xe, (ven/wpe) < 10-1, and Boz < 50 G.

Typical beam parameters are (nb/ne) < 10-2, and Eb < 350 eV. Using these

parameters we have wpe - 5.6 x 109 s- 1 , le - 108 s-1, vb - 109 cm/s, and

(Se/wpe) << 1. The ratio (rb/rg) - 0.4 in the interaction region, while 6o ~

5.3 cm and ((rg - rb)/6o) - 3.6.

The beams excite electrostatic waves at the upper hybrid frequency,

which is of the order of wpe because (ae/Wpe) << 1, with hydrodynamic growth
rate, which for (nb/ne) - 10"  is 6 - 0.08 wpe. The electrostatic wave energy

density is estimated experimentally to be (Wp/neTe) 10- 3 - 10-2. If we
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compare this value with (kz Oe)2 - Te/Eb ~ 2/350 - 5.7 x 10- 3 , we see

that the experiment may still be in the weakly turbulent regime, with

(Wp/neTe) ( (kzie)2 . Actually it is curious that the electrostatic

fluctuation level is so low, because beam trapping would give a saturation

level of (Wp/neie) - 0.02. It would appear that some process, such as the

modulational instability or the parametric decay instability, is preventing the

beam saturation level from being reached. If this is so, then the growth rate_max 1W/n~~/2an fo
for the modulational instability would be 6M0 x _ (Wp/3ne T12 and for

(Wp/neTe) - 5 x 10- 3 , 6P86 - 0.04 wpi"

The emission at &pe is quadropole in nature, indicating a process in

which two waves with w - wpe merge into a transverse wave with w - 2wpe. The

radiation appears to be accompanied by low frequency fluctuations near the ion

plasma frequency. It's claimed that the scaling of the EM peak frequency

versus WUH does not correspond to cavity modes (Figure 15). Maybe this is

because the excited beam modes have elgenfunctions which evanesce away from the

beam edge, which is thin compared to the cavity radius, and so the elgen-

functions are not really cavity mode elgenfunctions.

The power emitted at wpe when there are two counterstreaming beams is

larger than the incoherent sum of the power emitted at 2wpe by each beam

alone. The authors say that the power levels observed when two beams are

present are - 4 - 5 orders of magnitude larger than predicted by weak

turbulence theory. We note, however, that if (Wp/neTe) is given by the beam

trapping value, the power levels predicted by weak turbulence theory are closer

to experiment.

The efficiency of radiation output at 2wpe in a xenon plasma with two

counterstreaming beams is estimated to be - 2 x 10- 4 . The scaling of P(2wpe)

with beam energy goes like P(2wpe) - exp(Eb/Te) (Figure 16). No evidence is

seen for a lower energy threshhold or upper energy saturation limit. The

bandwidth of the radiation is small, with (aw/w) j 0.2 for w - 2wUH.

Increasing the ion mass of the plasma increases the efficiency of EM power

production, which the authors claim should be contained in a theory for the

emission process. (We note that since the electron-neutral collision cross

section increases with ion mass for He, Ar, and Xe at these electron

temperatures, see Figure 17, and the growth rate of the modulational
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instability decreases with ion mass, this last trend could reflect the

decreased strength of the modulational instability, and possibly the

concomitant increase in energy density of the electrostatic waves).

4.5.1.2 Relation to mm Wave Experiment

This experiment is similar to Schumacher and Santoru's experiment in

that the radiation at 2wpe comes from two counterstreaming electron beams in a

plasma-filled guide, the beams being nonrelativistic and steady-state. The

efficiencies are of the same order. In the Intrator et al. experiment,

however, radiation at 2wpe is observed from only one beam as well, while this

is not the case in the mm wave experiment, at least within the detectability of

the equipment, which is of the order of < 1 mwatt.

The chamber used in the Intrator et al. experiment is much larger, of

the order of 6 times longer in length and 15 times wider in radius, than the mm
wave experiment. The ratio of the collisionless skin depth to the chamber

radius is of the order of 0.15; for a 14 cm diameter beam in the interaction

region, there are about 5 collisionless skin depths between the beam edge and

the conducting wall. Thus strong hydrodynamic growth of the beam-plasma

instability is also to be expected in this experiment. However, because the

device is so large, the beam has sufficient time to thermalize. For example,

the temporal growth rate of the Cerenkov beam-plasma instability in this

experiment is of the order of 0.1 wpe - 5 x 108 51, and a few growth times

would be of the order of, say, 15 ns. During this time, the beam would have

travelled about 10 cm with its original energy, which is only 1/10th the length

of the device. In comparison, the beam in the mm wave experiment would have

travelled the entire length of the device during a few growth times.

What about the modulational instability or related strong turbulence

processes? First off, the parameter (kzlDe) 2 is of the order of 5.7 x 10-3 in

this experiment, while (W p/neTe) is estimated to be of the order of 10-3 _ 10-2

from measured data; thus the condition for strong turbulence can be marginally

satisfied.

We estimate the electron-neutral collision frequency in Intrator's

experiment to be ven < 105 s-1 for an Ar plasma at a pressure of P < 2.5 x 10-5

Torr, and Te - 4 eV. The electron-ion collision frequency is of the order of 7
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x 104. Thus collisions are unimportant relative to the plasma frequency or the

growth rate of the beam-plasma instability. The growth of the modulational

instability occurs at the rate 6MOD - Wpi (Wp/3neTe)l 2, which for (Wp/nele)

5 x 10- 3 is of the order of SMOD -
8 X 105 s" , so that the electron collision

frequency is < than the growth of the modulational instability. From Figure 13
we can calculate the ion-neutral collision frequency for the Ar plasma to be

about - 4 x 102 for the same pressure and (Ti/Te) - 1/10. This is different

from the nu wave experiment in which both electron and ion collisions can play

an important role in determining whether strong turbulence processes can

develop. It appears that strong turbulent stabilization of the beam-plasma

instability could be possible in the Intrator et al. experiment.

If one wanted to make more connection from the mm wave experiment to the
Intrator et al. experiment, one could do a few things in the mm wave

experiment. One thing would be to lower the electron neutral collision
frequency relative to the modulational growth rate: this might be accomplished

by going to a noble gas like A or Xe, with Te - 1 eV in order to lower ae.A, or

by going to higher plasma density and larger (nb/ne) so that 6MOD increases.
Another thing to do would be to improve the diagnostics so that a direct

measure of (Wp/neTe) could be made, to check the weak turbulence predictions of
power radiated at 2wpe, as was done in the Intrator experiment. Some data

manipulation which probably could be readily done would be to (1) check the

scaling of P(2wpe) with Eb/Te, and (2) to retrieve a plot of frequency at peak
power output versus wpe, to determine whether the emitted power follows cavity

mode dispersion relations in the mm wave experiment.

4.5.2 Experiment B

5.5.2.1 Summary of Experimental Results

The experiment of Leung et al., Ref. 62, also observes 2wpe radiation in

a counterstreaming electron beam-plasma setup. The vacuum chamber in this case

is larger than that in the Intrator et al. experiment, being 180 cm in diameter

and 180 cm in length, although the background plasma density and electron

temperature are similar, with ne - 1010 cm"3, Te ~ 2 eV, and Te/Ti - 10. The

beam densities are a bit lower than the Intrator experiment, with (nb/ne) ~

0.001 - 0.01, and the beam energies are also lower, with Eb - 100 eV. It is
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claimed that weak turbulence theory applies to this experiment: (1) the power
radiated at 2w scales as W2t0.5, (2) the width of the electrostaticpe P
fluctuations is narrow, with (Aw/w) 100 Mhz/1 Ghz - 0.1, which corresponds to

(Aw/w) - (nb/2ne)1/3 with (nb/ne) ~ 0.005, (3) the width of the peak in the
wpe radiation is correspondingly narrow, with (aw/w) - 300 Mhz/2.2 Ghz - 0.15.

To see if the experiment is in the weakly turbulent regime we compare
(Wp/neTe) with (kzXDe)2 . From beam trapping, (Wp/neTe)- (Wp/nbEb) (nbEb/neTe)
~ (nb/2ne)i/ 3 1/2 (nb/ne) (Eb/Te). For (nb/ne) ~ 0.005, and Eb/Te - 50, we

have (Wp/neTe) - 0.017, while (kzXDe) 2 - Te/Eb 0.02, and so it's marginal
whether strong turbulence applies. We don't know what the collision

frequencies are.

4.5.2.2 Relation to mm Wave Experiment

This experiment is performed in a much larger device then the mm wave

experiment, so that quantization is probably much less important. Indeed, the

ratio of the collisionless skin depth 60 to the chamber radius rg is of the
order of 0.06, while the ratio of the axial wavelength of the maximally

unstable mode Xzo to the length of the device L is of the order of 3 x 10- 3 .
For comparison, in the mm wave experiment, the ratio (60/rg) is typically 0.25,

while the ratio (Xzo/L) is of the order of 0.03.

The ratio (nb/ne) is higher but the beam energy is lower than in the mm
wave experiment. This latter fact means that an absolutely larger value of the

ratio (Wp/neTe) is needed in the Leung et al. experiment in order to put it in

the strongly turbulent regime, because (kzxe) 2 _ Te/Eb. Whereas strong

turbulence processes may not exist in the Leung et al. experiment because

(Wp/neTe) doesn't get large enough, strongly turbulent processes may not be

able to go in Schumacher and Santoru's experiment owing to electron collisions.

To make more connection of the mm wave experiment with this other 2-beam

experiment, it might be helpful to reduce the mm wave data, if possible, to (1)

determine the width (aw/w) for the radiation, (2) do a fit to P(2wpe) to see

how it scales with Wp, if measurable, or with (nb/ne), if the effective (nb/ne)
in the interaction region can be determined.
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4.5.3 Experiment C

4.5.3.1 Summary of Experimental Results

Another counterstreaming electron beam-plasma experiment was performed

by Aixpff et al., and reported in Ref. 63. In this experiment, a bumpy torus

device modelled a situation in which two interpenetrating electron beams could

interact with a heavy ion background. An instability at the frequency W -

(wpep)1/2 was observed, and derived theoretically. We don't see an immediate

connection with the mm wave experiment right now, because the relevant

instabilities in the latter experiment probably involve the interaction of the

beam electrons with the background electrons.

4.5.4 Experiment D

4.5.4.1 Summary of Experimental Results

Michel et al., Ref. 64, detected both the emission of radiation at 2pe

and the formation of density depressions, which they claim are consistent with

the predictions of strong turbulence theory. The experiment is again steady

state, and performed in a large cylindrical, plasma-filled device, with

diameter 2 m, and length 3 m. The background plasma density is ne - 3 x 1010

cm-3 , and the background Te appears to be Te < 1 eV. There is a weak axial

magnetic guide field of Boz - 2 - 5 G, so that (ae/wpe) - 7 x 10-3. The ratio

(nb/ne) - 2 x 10-3 for a beam diameter of 30 cm. The background gas is argon,

and with Te < 1 eV, and P - 2 x 10-4 Torr, the electron-neutral collision

frequency v n - 4 x 104 s-1 . The electron-ion collision frequency appears to

be vei - 10 s -1.

The beam energy is varied over a wide range, from 100 eV to 5 keV. The

threshhold value of beam energy for second harmonic emission was 500 eV. To

see why, consider that (kzxDe)2 _ Te/Eb has to be much less than (Wp/neTe) in

order for strong turbulence to be present. Using the beam trapping estimate,

(Wp/neTe) - 1/2 (nb/2ne)1/ 3 (nb/ne) (Eb/Te). For (nb/ne) - 2 x 10- 3 , the
condition (Wp/neTe) > (kzOe)2 implies (Te/Eb)2  0-4. For Te - I eV, this

implies Eb > 100 eV, which is within the ball park. Actually, measurements of

the density fluctuation levels and the density depressions yield 6n/n - 20-30%,
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which implies for an estimate of the peak electrostatic field amplitude, 6n/n ~

E2/& neTe ~ 0.2-0.3. This is close to the beam trapping estimate of (W meTe)
- 0.5 for (nb/ne) 2 2 x 10-3 and Eb/Te 500.

4.5.4.2 Relation to mm Wave Experiment

The ratio of the collisionless skin depth to the radius of the plasma-

filled chamber is again much smaller than in Schumacher and Santoru's

experiment, with 60 /r9  0.03 in this case: thus the plasma is essentially

infinite. The beam energies are nonrelativistic, while those used in the mm

wave experiment are nonrelativistic or only mildly relativistic.

It appears that this experiment can be in the strongly turbulent regime

if the beam energy is high enough, so that the condition (Wp/neTe) > (kzoXoe)2

is satisfied. Because the electron collision frequencies are less than the

modulational instability growth rate, 6MOD - wpi(Wp/3neTe)1/2 _ 0.26 wpi ~ 107

s"4, there doesn't appear to be quenching by collisions. As in Schumacher and

Santoru's experiment, there is no radiation at wpe, which Michel et al. claim

is due to the fact that the density gradients are too smooth.

There is no detectable radiation at 2wpe from the mm wave experiment

when there is only one beam present, as compared with this experiment in the

strongly turbulent regime. One way to make a better connection between the

experiment of Michel et al. and the mm wave experiment would be to arrange

parameters so that the latter is in the strongly turbulent regime with only one

beam present.

4.5.5 Experiment E

4.5.5.1 Summary of Experimental Results

In the experiment of Cheung et al., Ref. 65, the formation of density

cavities, spikey turbulence, and electromagnetic radiation at Wpe, 2wpe, and

even 3wpe, were observed simultaneously when a cold electron beam was injected

into an ambient plasma. The experiments were performed in a large, 1.8 m long,

1.8 m diameter, vacuum chamber. The argon gas afterglow plasma had typical

parameters Te - 1.5 eV, and ne - 2.3 x 109 cm. The experiment is basically

steady state, with beam energy Eb - 800 eV, beam density (nb/ne) - 0.2-4%. The
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beam diameter is about 4 cm, so that the distance between the beam edge and the

conducting wall is- 8 collisionless skin depths.

At high beam densities, e. g., (nb/ne) - 2%, the wave intensity of the

excited beam modes becomes strong enough to create density cavities in the

region where it saturates. These cavities become of the order of 6n/n -

40-50%. As the density cavity deepens up to this value, the location of the

peak in the EM emission shifts from wpe to 2 pe. The emission at 2wpe is

attributed to the process t + X + t(2wpe), in which two antiparallel

propagating Langmuir waves trapped in a cavity coalesce to produce radiation at

ampe" Since (kzxDe)2 _ Te/Eb - 1.5/800 - 2 x 10-3 , and (Wp/fneTe) > 0.2, this

experiment is in the strongly turbulent regime. (Not sure what the background

pressure is, but because it's an argon afterglow plasma, it's probably low, and

the electron collision frequency is probably lower than the modulational

instability growth rate.)

4.5.5.2 Relation to mm Wave Experiment

The experiment of Cheung et al. is also a steady state experiment, with

nonrelativistic beam energies. However, the ratio (nb/ne) goes to much higher

values than has been used so far in the mm wave experiment, that is (nb/ne) ~

0.02 for the Cheung et al. experiment versus (nb/ne) < 0.001 for the mm wave

experiment. If it's possible to go to larger beam currents, and therefore

larger (nb/ne) in the mm wave experiment, then it may be possible to make

connection with this experiment and observe 2wpe radiation with only one beam

present.

4.5.6 Experiment F

4.5.6.1 Summary of Experimental Results

The experiments of Kato et al., Ref. 66, involved the interaction of a

relativistic electron beam with a plasma to produce high power (> 10 MW)

broadband radiation. The experiment covered the range of beam to plasma

density from 0.01 < (nb/ne) < 2. They observed what appears to be a transition

in the spectral behavior of the radiation, from weak turbulence, with most of

the power emitted at wpe, to a regime at the highest values of (nb/ne), with
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emission at frequencies w >> wpe and weak harmonic structure not predicted by

soliton type emission theories.

The relativistic electron beam is pulsed, with a 50 ns FWHM, and it is

high current (Ib ~ 128 kA), and annular (r - 3 cm, ar - 1 cm), with an energy

of Yb - 3. The background plasma density is ne 1 1013 cm- 3 , so that the

collisionless skin depth 60 ~ 0.16 cm, and there are many 60s between the beam

edge and the conducting walls of the chamber. The plasma is either

unmagnetized or weakly magnetized.

There are some other experiments by these researchers in collaboration

with other workers, referred to in Refs. 67 and 68, which are again interesting

high power mw beam-plasma experiments. Reference 67 reports on the observation

of both high frequency, w - Wopet as well as low frequency, w < wpe' radiation.

The high frequency radiation resembles radiation from processes in type-lII

solar bursts: weak turbulence theory is used to explain the emission, even if

the beam is stabilized by the modulational instability, because the damping of

plasma waves by the radiation itself can prevent soliton collapse. The

emission at low frequency was claimed to arise from scattering off density

gradients near the wall of the plasma-filled chamber, where the density was

lower.

Reference 68 reports on the observation of high power mw emission when a

cylindrical drift tube chamber was modified to form a resonator for a

relativistic electron beam-plasma system. The principal drift tube has a 10 cm

radius, and the beam is annular, with a 2.5 cm radius. Various configurations,

including screens mounted perpendicular to the beam at different distances, and

additional coaxial drift tube structures, were investigated. The radiation

peaks at the plasma frequency, but between the different configurations the

peak power/Ghz, energy/Ghz, and bandwidth differed by an order of magnitude.

This experiment was a longer timescale, T - 15 us, lower current, Ib - 12 kA,

and lower beam energy, Eb - 500 keV, experiment than the previous two. The

beam propagates into a 20 cm diameter, 1.5 m long drift tube, with an axial

magnetic field of a few kG. The background plasma density appears to be of the

order of ne - 1i12 cm"3.

It was proposed by the authors that the results in Ref. 68 could be

explained by a combination of two mechanisms: (1) radiation at wpe and 2Wpe
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from the plasma by strong turbulence, and (2) radiation by bunched electrons in

the REB caused by electrostatic waves which act as a wiggler, with the emission

double doppler shifted so that w = Ybp It's claimed that the reflected

longitudinal plasma waves can provide a pump wave for the beam electrons,

acting like a longitudinal "wiggler" with kz ~ Wp/Vb.

4.5.6.2 Relation to mm Wave Experiment

These experiments are intense, relativistic beam experiments, unlike

Schumacher and Santoru's experiment which is in the nonrelativistic to mildly

relativistic regime, with low beam densities (nb/ne) " 1. If the mm wave

experiment goes to larger beam currents and higher beam energies, then it may

be possible to make more connection with these experiments. However, it might

be interesting to do resonator experiments in the mm wave experiments, similar

to Ref. 68. With appropriate beam and waveguide parameters, it would be

interesting to see if radiation could result from a single beam, using various

screen and drift tube structures.
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